石墨炉(二)

操作原理整个分析程序有四个部分组成:干燥,灰化,原子化,净化。干燥目的是除去溶剂,保留待测物,温度升至略低于沸点,在慢慢升至略高于沸点,通常在100℃左右,保持10-20s灰化灰化目的是除去有机质和易挥发基体,而待测物不损失。一般温度在100-1800℃,灰化时间10-30s。原子化高温使待测物原子化,在原子化完全或尽可能多的原子化前提下,原子化温度尽可能低,可以延长炉体寿命。通常为1800-3000℃,原子化时间为5-10s。净化在高温下,加热3-5s,以除去管内样品残渣,以减少和避免记忆效应。注意净化时间要短,以防止损坏炉体。加热程序......阅读全文

原子吸收中各个元素的最佳灰化时间和灰化温度

最佳灰化时间和灰化温度、原子化时间和原子化温度是与基体相关的。例如,同样是检测镉,在饲料中与饮用水中的灰化时间和灰化温度、原子化时间和原子化温度就不一样,在检测饲料中的镉,加了基体改进剂后,灰化时间是15s,灰化温度850度至950度,原子化时间3s,原子化温度是1450度;而测饮用水中的镉,它可以

石墨炉原吸光谱干燥、灰化、原子化的温度和时间选择

  1干燥升温模式、温度和时间的选择  干燥条件直接影响分析结果的精度,升温模式一般都选择斜坡升温方式,温度略高于溶剂的沸点,时间由进样体积确定,每微升2~3.要求通过缓慢而平稳的升温过程达到设定的温度,没有发生样品飞溅,再将温度恒定保持一段时间(10~30s),达到溶剂完全蒸发除去。  在实验工作

原子荧光碳黑中铅时,用干法灰化问题

我在做碳黑中铅时,用干法灰化,在500度4小时不能灰化,还是黑乎乎的,于是升温至550度,继续4小时,样品是灰化了,黄黄的灰,做下来的回收率太差了,加入样品中1PPM的标准铅,一点都没有了,回收率为0,请问有谁做过类似样品,有好的处理方法? 样品处理方法部正确,取样量不要太大,需要加入相关试剂。如有

加助灰化剂灰化法的操作过程

称取试样后,加入3.00 mL 乙酸镁溶液(80 g/L),使试样完全润湿。放置10 min 后,在水浴上将水分蒸干,以下步骤按方法一操作。同时用相同浓度和体积的乙酸镁溶液做3次试剂空白试验

微波灰化/磺化技术

传统灰化是指样品中的有机物质在高温下通过氧化作用分解。PYRO微波灰化是微波透过真空成型的氧化铝陶瓷炉腔,使炉内温度迅速升高。同时,炉体侧壁装有多孔蜂窝状陶瓷塞,具有强大的空气流通性,可以使空气络绎不绝地从装有样品的坩埚上方通过。利用微波的高热和气流中的高浓度的氧气相结合的方法,使样品的灰化时间由传

马弗炉灰化流程

马弗炉灰化流程很多厂家在一些材料的选择和使用上,因为不够了解材料的熔点和其他性能,在使用不熟悉的材料来进行加工时会出现很多问题。解决这种问题可使用马弗炉来对材料进行灰化,让材料中的有机物质去除在对材料进行检测,可以有效知道材料的熔点。那么在马弗炉中进行灰化时有哪些注意事项呢?安晟小编给大家带来了一些

微波灰化技术的应用

随着社会的发展,石油及石油类产品在国际国内市场的需求量逐年增长。随着环保要求越来越严格,石油及石油类产品的质量指标控制也越来越高。灰分及金属含量是石油及石油类产品质量控制的两个重要指标。石油产品的灰分可作为衡量油品洗涤与精制是否正常的指标。石油产品中杂质金属元素如Fe、V、Ni等严重影响使用质量,在

原子化器

原子化器的功能是提供能量,使试样干燥、蒸发和原子化。入射光束在这里被基态原子吸收,因此也可把它视为“吸收池”。对原子化器的基本要求是:必须具有足够高的原子化效率;必须具有良好的稳定性和重现性;操作简单;低的干扰水平等。常用的原子化器有火焰原子化器和非火焰原子化器。5.2.2.1 火焰原子化器火焰原子

热分解原子化

常用于氢化物原子吸收光谱法中加热石英管中的原子化机理,一般认为氢化物元素沸点低、容易分解,只需足够高的石英炉管的温度,氢化物会直接热解形成自由气态原子。Thompson等认为砷化氢在加热石英管中是由于“热解原子化”;Verlinden 等认为用电加热石英管来“热分解氩气氛中的砷化氢”。但是,这种机理

原子化器系统

原子化器是将样品中的待测组份转化为基态原子的装置。1.火焰原子化器火焰原子化法是利用气体燃烧形成的火焰来进行原子化的,实际上就是一个喷雾燃烧器,由三部分组成,即喷雾器(nebulizer)、雾化室(spray chamber)和燃烧器(bumer)。(1)喷雾器:将试样溶液转为雾状。(2)雾化室:内

火焰原子化器和石墨炉原子化器的区别

  主要区别在:  1、原子化器不同  火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。  石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。  原子化程序分为干燥、灰化、原子化

火焰原子化器和石墨炉原子化器的区别

主要区别在:1、原子化器不同火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。原子化程序分为干燥、灰化、原子化、高温净化 。原子化

火焰原子化器和石墨炉原子化器的区别

主要区别在:1、原子化器不同火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。原子化程序分为干燥、灰化、原子化、高温净化 。原子化

火焰原子化器和石墨炉原子化器的区别

主要区别在:1、原子化器不同火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。原子化程序分为干燥、灰化、原子化、高温净化 。原子化

雌激素可防治血管“石灰化”

  日本大阪大学的一个研究小组日前报告说,该小组在用人血管细胞和老鼠进行实验时发现,闭经后多发的骨质疏松症和一种动脉硬化现象——血管“石灰化”,是由同一种蛋白质引起的。可抑制这种蛋白质作用的雌激素,对于防治血管“石灰化”也有作用。   大阪大学教授森下龙一和中神启德率领的这个研究小

提升实验效率的Carbolite灰化炉

随着检测要求的不断提高,专为食品、石化、煤等研究领域的灰分测定而设计的灰化炉日益受到关注,本文从灰化温度、通风性能、防腐蚀等多方面性能考虑,选择了既能提高研究人员的工作效率,又安全耐用的灰化炉。 灰分测定即将可燃性的粉末样品通过高温条件下灼烧,将有机化合物、水全部以气、汽态方式挥发掉,金属

​ICP原子发射光谱仪火焰原子化法实现原子化的过程

火焰原子化在这过程中,大致分为两个主要阶段:(1)从溶液雾化至蒸发为分子蒸气的过程。主要依赖于雾化器的性能、雾滴大小、溶液性质、火焰温度和溶液的浓度等。(2)从分子蒸气至解离成基态原子的过程。主要依赖于被测物形成分子的键能,同时还与火焰的温度及气氛相关。分子的离解能越低,对离解越有利。就ICP原子发

什么是原子化器

  原子化器是原子吸收光谱分析进行试样原子化的装置。它将试样转化为自由原子蒸气(基态原子),以便吸收特征辐射。入射光束在这里被基态原子吸收,因此也可把它视为“吸收池”。对原子化器的基本要求是必须具有足够高的原子化效率;必须具有良好的稳定性和重现形等。它的种类很多,大致可分为火焰原子化器及电热原子化器

AAS原子化器简介

AAS原子化器简介原子化器的功能是提供能量,使试样干燥、蒸发和原子化。入射光束在这里被基态原子吸收,因此也可把它视为“吸收池”。对原子化器的基本要求:必须具有足够高的原子化效率;必须具有良好的稳定性和重现形;操作简单及低的干扰水平等。常用的原子化器有火焰原子化器和非火焰原子化器。(一)火焰原子化器 

原子化器的简介

  原子化器是原子吸收分光光度计中产生原子蒸气的装置。元素测定的灵敏度、准确度和干扰情况,很大程度上取决于试样原子化过程。对其要求为:原子化效率要高,稳定,背景低,噪音小,且没有记忆效应,重现性好。  原子化器有火焰与非火焰原子化器之分。火焰原子化器主要包括雾化器和燃烧器。根据构造不同,燃烧器又可分

马弗炉实验小样灰化时注意事项

马弗炉化灰时分的注意事项:       (1)瓷舟中的试样要摊平,且试样的厚度不得太大;   (2)灰化时可打开炉门,将耐热板上的盛有试样的瓷舟慢慢推进箱形高温电炉炉口, 先使瓷舟中的试样慢慢灰化冒烟,待几分钟后试样不再冒烟时,慢慢将瓷舟推入高 温炉内的炽热部位,关闭炉门使试样在815±15

氟——灰化蒸馏—-氟试剂比色法

氟——灰化蒸馏— 氟试剂比色法试样经硝酸镁固定氟,经高温灰化后,在酸性条件下,蒸馏分离氟,蒸出的氟被氢氧化钠溶液吸收,氟与氟试剂、硝酸镧作用,生成蓝色三元络合物,与标准比较定量。本方法所用水均为不含氟的去离子水,试剂为分析纯,全部试剂贮于聚乙烯塑料瓶中。1 丙酮:需500ml.2 盐酸(1+11):

食品样品预处理传统方法干法灰化

这是一种用高温灼烧的方式破坏样品中有机物的方法,因而又称为灼烧法。除汞外大多数金属元素和部分非金属元素的测定都可用此法处理样品。将一定量的样品置于坩埚加热,使其中的有机物脱水、炭化、分解、氧化,再置高温电炉中(一般为500~550℃)灼烧灰化,直至残灰为白色或浅灰色为止,所得的残渣即为无机成分,可供

与火焰原子化器相比石墨炉原子化器有哪些优点

原子化器主要有两大类,即火焰原子化器和电热原子化器。火焰有多种火焰,目前普遍应用的是空气-乙炔火焰。电热原子化器普遍应用的是石墨炉原子化器,因而原子吸收分光光度计,就有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间

与火焰原子化器相比石墨炉原子化器有哪些优点

原子化器不同火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。

火焰原子化器的自由原子分布介绍

  自由原子在火焰中的空问分布与火焰类型、燃烧状态和元素性质有关。如图1是三种元素的吸收值沿火焰高度的分布曲线。镁最大吸收值大约在火焰的中部。开始吸收值沿火焰高度的增加而增加,这是由于长时间停留在热的火焰中,产生了大量的镁原子。然而当接近第二反应区时,镁的氧化物明显地开始形成。由于它不吸收所选用波长

原子吸收光谱法特殊原子化技术

  原子吸收光谱法特殊原子化技术能大幅度提高提高测定灵敏度,并扩大原子吸收光谱仪检测法的应用范围。不过它们只在某些特殊情况下进行才显示其价值和特点,因而在应用上有一定的局限性。   1 氢化物原子化法   氢化物发生法是将含砷、锑、锡、硒和铋等的试样转变成气体后进入原子化器的一种方法。它可以提高对这

什么是低温原子化法?

低温原子化法又称化学原子化法,是指原子吸收光谱法中使元素化合物在低温下(室温乃至数百摄氏度)热解。低温原子化法中原子化温度为室温至摄氏数百度。常用的有汞低温原子化法及氢化法。

自由基碰撞原子化

大量H·自由基的增加有助于原子化,被认为是自由基碰撞原子化机理的有力论据。Dědina及Rube ška对富燃氢-氧焰所提出的H·自由基可能是火焰反应区内游离基所致。这就很好地解释氢化物原子化时,H2的存在必要条件,以及02的作用和石英管表面的影响。石英在温度为1000℃ 时具有很强的催化作用,H·

多功能一体化原子化器

  当今市场上销售的多功能原子吸收分光光度计需要用户手工装卸不同种类的原子化器,并且切换步骤繁琐,加大了用户的工作量和人为因素对仪器测量的影响。随着各行业标准的完善和原子吸收分光光度计应用于越来越多的行业,该类仪器所测定的元素种类相对较少,操作流程复杂,仪器占据空间大,已经不能满足用户的需求。多功