科学家设计出具有三维结构叉指纳米电极的电介质电容器

近期,中国科学院合肥物质科学研究院固体物理研究所孟国文研究小组与中国科学技术大学教授宋礼及美国达拉华大学教授魏秉庆合作,设计出一种具有三维结构叉指纳米电极的电介质电容器,相关研究结果以Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage 为标题发表在Science Advances (Sci. Adv. 2015, 1, e1500605)上。 电介质电容器是储存电荷的“容器”,能够为各种电器设备提供能量。与电池相比,电介质电容器功率密度高,能在瞬间提供巨大的电能。然而,电介质电容器的电荷仅存储在电极表面,所以一般的电介质电容器储存电荷能力较差(能量密度低),这也是制约电介质电容器实际应用的瓶颈。增大电极材料比表面积,能够提高电介质电容器储存电荷的能力。为此,人们普遍采用纳米多孔材料......阅读全文

科学家设计出具有三维结构叉指纳米电极的电介质电容器

  近期,中国科学院合肥物质科学研究院固体物理研究所孟国文研究小组与中国科学技术大学教授宋礼及美国达拉华大学教授魏秉庆合作,设计出一种具有三维结构叉指纳米电极的电介质电容器,相关研究结果以Dielectric capacitors with three-dimensional nanoscale i

分级多孔碳结构作为超级电容器电极材料

  由于碳材料优良的导电性,可裁剪性,价格低廉,它已被广泛研究作为超级电容器的电极材料。几十年来,碳基超级电容器电极的电容一般保持在100和200 F g-1之间。近来,一种被称为分级多孔碳的新型碳材料,其电容超过了300 F g-1,该类材料实现了传统碳材料在超级电容器应用中的新突破。分级多孔碳含

超高功率超级电容器电极材料:多孔三维寡层类石墨烯

  双电层超级电容器(EDLC)具有功率密度高、循环寿命长、安全性好等优点,在消费电子产品、电动汽车、国防科技和航空等领域具有广泛的应用,相关研究成为当前的前沿热点。理想的EDLC电极材料应同时具备:1)高比表面积以确保足够的电荷存储空间;2)均衡分布的孔结构以利于电解液离子的快速输运,提升比电容和

电容器的基础知识

电容器篇Vol.1电容器的基础知识电容器与电阻、电感并称为三大被动元件,其年产量在世界范围内已达约2万亿个 。电容器中使用最广泛的是陶瓷电容器,同时,绝缘性和稳定性俱佳的薄膜电容器、以大容量著称的电解电容器等各类电容器,也凭借各自的优势与特点为人们所用。电容器的原理与结构电容器的基本结构是间隔对置的

纳米管束推动固态储能器发展

  据美国物理学家组织网近日报道,莱斯大学研究人员发明了一种以纳米管为基础的固态超级电容器。它有望集高能电池和快速充电电容器的最佳性质于一个装置中,以适合极限环境下使用。相关研究成果发表在《碳杂志》上。   双电层电容器(EDLCs)一般被称为超级电容器,拥有比电池等用于调节流量或供

上海硅酸盐所合作在超级电容器研究中取得进展

  轻质量、柔性的高效储能材料在日常生活中扮演了非常重要的角色。超级电容器因其高功率密度、长循环寿命而被认为是最有应用前景的新型储能材料。有序介孔碳作为超级电容器领域的明星材料,具有理论储能容量高、结构有序和稳定性高的优点,引起了储能研究工作者的广泛关注和研究。然而,介孔碳的微结构高缺陷,电子导电率

合肥研究院等创制出套娃结构碳管阵列并构筑出小型化滤波电容器

  近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文和韩方明团队,与美国特拉华大学教授魏秉庆合作,在前期基于结构一体化三维互连碳管网格膜的高性能滤波电容器的基础上,设计制备了类似“俄罗斯套娃”结构的多壳层同轴碳管的三维互连阵列,进而将其作为对称型双电层电容器的电极,构建了新型滤波超级电容

苏州纳米所在碳纳米材料高能柔性电容器中取得进展

  随着现代科学技术的发展,柔性、可穿戴、可折叠、智能化是电子设备发展的主流方向,为电子产品提供能量的储能器件也逐步向轻、薄、韧等方向发展。柔性超级电容器是一种储能器件,具有高容量、充放电速度快、安全环保等特点,在新兴的电子智能设备等高新技术上有着广阔的应用前景。碳纤维和碳纳米管纱布等碳纺织品作为柔

苏州纳米所三维等离子纳米结构及其光学性质研究获进展

  精确空间定义的等离子纳米结构在等离子增强单分子光谱、等离子手性光学及纳米光电器件研究中具有重要科学意义。组成粒子的尺寸、间距及结构空间构型精确控制的三维等离子纳米结构可能展示在一维和二维结构中难以实现的新颖光学、电学及磁学性质。目前,在“自下而上”构建三维等离子纳米结构的研究中,球形粒子由于其各

苏州纳米所在三维离散纳米结构可控组装方面取得新成果

     纳米材料具有各种优异的理化性质。将纳米材料组装成有序的超结构,是研究纳米材料间相互作用和构建新型纳米器件的关键一步。模板指导法是应用最为广泛的“自下而上”的策略。与化学合成以及物理加工所得模板相比,生物材料模板大小均质、易于改造和易于大量制备,在指导纳米结构组装方面具有独特优势。  最近,

国家纳米中心用DNA折纸术组装纳米颗粒三维手性螺旋结构

  如何能在纳米尺度上对材料结构进行精确的控制,形成具有特殊性能的聚集体,是当今科学界最具有挑战性的前沿课题之一。近年发展起来的DNA折纸术是一种独特的自下而上的自组装纳米技术,被用于制备多种尺寸、形貌的二维和三维纳米图案。DNA折纸纳米结构由于结构可设计性和空间

中美研究人员开发出三维纳米“剪纸”结构

新华社华盛顿7月7日中国和美国研究人员从中国传统艺术“拉花剪纸”中得到灵感,制备出形貌特异的三维纳米结构,有望在生物分子识别和光通信等领域获得应用。 发表在最新一期美国《科学进展》杂志上的研究显示,研究人员采用高剂量“聚焦离子束”作为“剪裁”手段,使厚度只有几十纳米的金膜从二维平面弯折成复

中美研究人员开发出三维纳米“剪纸”结构

  中国和美国研究人员从中国传统艺术“拉花剪纸”中得到灵感,制备出形貌特异的三维纳米结构,有望在生物分子识别和光通信等领域获得应用。  发表在最新一期美国《科学进展》杂志上的研究显示,研究人员采用高剂量“聚焦离子束”作为“剪裁”手段,使厚度只有几十纳米的金膜从二维平面弯折成复杂的三维立体结构,加工出

“绝缘”又“导热”,突破尖端电子装备发展瓶颈

  聚合物是一类重要的电工绝缘材料,然而聚合物材料的导热性普遍性较差,提升聚合物的导热性往往以牺牲绝缘性能为代价。“绝缘和导热的矛盾”是制约聚合物材料在尖端电气电子装备应用的瓶颈之一。  3月2日,《自然》刊发上海交通大学化学化工学院教授黄兴溢团队与合作者的最新研究成果。研究人员通过等规链段层状排列

“绝缘”又“导热”,突破尖端电子装备发展瓶颈

原文地址:http://news.sciencenet.cn/htmlnews/2023/3/495041.shtm聚合物是一类重要的电工绝缘材料,然而聚合物材料的导热性普遍性较差,提升聚合物的导热性往往以牺牲绝缘性能为代价。“绝缘和导热的矛盾”是制约聚合物材料在尖端电气电子装备应用的瓶颈之一。3月

透明柔性微型超级电容器

电子产品正朝着柔性化、透明化、轻薄化的趋势发展。研究高性能柔性透明电极材料与透明超级电容器对柔性电子产品的透明化具有重要的意义。最近,东华大学的王宏志课题组侯成义博士等人基于二硫化钼纳米材料开发了全透明柔性微芯片超级电容器。二硫化钼是一种过渡金属硫化物纳米材料,具有多样的晶格排布方式(1T, 2H,

超级电容器电极材料“瓶颈”获突破

  原料来自于储量丰富提取便利的铁盐、碳等,能在常温常压下进行合成,不产生有毒有害气体……近日,南京理工大学夏晖教授团队成功合成了非晶FeOOH/石墨烯复合纳米片,这种新新型非晶材料将大幅降低超级电容器的成本,极大地推动其商业化。   一直以来,超级电容器电极材料的研究集中在纳米晶材料上,但是纳米晶

苏州纳米所等在高性能柔性储能器件研究中取得进展

  近日,中国科学院苏州纳米技术与纳米仿生研究所研究员邸江涛等与佐治亚理工学院教授Ching-ping Wong合作,设计并制备出锌掺杂氧化铜纳米线(Zn-CuO)三维阵列结构,为电化学活性物质MnO2提供导电支架,获得高负载的MnO2纳米片材料。将生长在铜线表面的Zn-CuO@MnO2材料用于同轴

三维离散纳米结构可控组装及其性质研究获重要进展

  近年来,由于在基础物理学研究和功能纳米器件方面的巨大潜力,离散纳米结构的可控组装引起了人们极大的研究兴趣。例如,由金和银纳米颗粒构成的二元组装体表现出距离依赖的表面等离子体共振耦合效应,从而被发展成为一种分子水平的刻度尺。虽然人们发展了一些策略(包括小分子,短肽,DNA

科学家-聚吡咯铜金属海绵制备能量转换-存储一体化器件

  柔性电子器件作为一种可弯曲、可形变的新型电子器件,日益受到广泛关注。近年来的科学研究也推动了柔性电子器件在信息、能源、医疗等领域的飞速发展,但现有的柔性电子器件依然存在质量大、形变不易恢复等不足之处。因此,制备机械稳定性高、质量小的柔性电子器件迫在眉睫。海绵是一种形变可逆的多孔材料,其已被广泛应

锂电池时代可维持多久?超级电容引入新材料

  记者近日从盐城工学院获悉,一种多级孔结构碳材料在该校诞生,而使用新型纳米材料的超级电容器,创造了全球极快速充放电电容量的新纪录。目前该研究成果已在线发表在《纳米快报》上。  超级电容器是一种功率密度大的储能装置,能够在极短时间内充放电,但是受制于能量密度小,应用范围远不如锂电池。为此,让新型电极

高性能锂离子电池负极材料研究获进展

  近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文和韩方明团队,在高性能锂离子电池负极材料研究中取得了新进展。此前,该团队创制了纵-横互连三维碳管网格膜,并以该网格膜作为对称型双电层电化学电容器的电极,构筑了小型化高性能滤波电容器。以此为基础,该团队以这种三维互连碳管网格膜为骨架,构建

溶液(DO)电极电极结构

DO电极结构:一般由阴极、阳极、电解质和塑料薄膜构成。  电解质:一般对电解质的配方视为机密,商家不易公开。电解质的配制很讲究,需用无离子水,一些污染的离子会严重影响电极的性能。所用药品试剂要求至少用AR级的。电解质有用,KOH; KCl, Pb(AcO)2等。薄膜:一般采用聚四氟乙烯(F4)或聚四

物理所碳纳米管薄膜简洁超级电容器研究取得新进展

  最近,中科院物理研究所/北京凝聚态物理国家实验室(筹)先进材料与结构分析实验室“纳米材料与介观物理”课题组提出了一种结构简单、重量轻、能量密度和功率密度高的碳纳米管薄膜简洁式超级电容器及其制备方法。相关研究结果发表在Energy & Environmental Science(2011, 4,

我国科学家首次获得纳米级光雕刻三维结构

14日夜,国际顶级学术期刊《自然》发表了我国科学家在下一代光电芯片制造领域的重大突破。南京大学张勇、肖敏、祝世宁领衔的科研团队,发明了一种新型“非互易飞秒激光极化铁电畴”技术,将飞秒脉冲激光聚焦于材料“铌酸锂”的晶体内部,通过控制激光移动的方向,在晶体内部形成有效电场,实现三维结构的直写和擦除。这一

美用DNA“砖块”搭出上百种三维纳米结构

  据物理学家组织网11月29日报道,最近,美国哈佛大学维斯生物工程研究院的科学家用DNA“砖块” 造出了100多种三维纳米结构。几个月前,该研究小组曾造出了一些二维结构,这是又一大的进步,意味着他们从能建造一面墙到可以建造一座房子了。介绍新方法的论文作为封面文章发表在11月30日出版的《科学》

兰州化物所仿生材料表面微纳米结构三维优化获进展

  将仿生学与纳米科学相结合,开展用于摩擦学领域的仿生结构、功能及结构-功能一体化材料的研究,可在基础科学和应用技术之间架起一座桥梁,从而为摩擦学领域所使用的新型结构、功能及结构功能一体化材料的设计、制备和性能研究提供新概念、新原理和新方法。自然界中很多动植物表面都具有稳定的超疏水性,它们既拥有高接

新方法实现功能性三维纳米结构精准控制

原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516933.shtm金属和半导体三维纳米结构是下一代半导体器件、神经形态计算和先进能源应用的潜在基础材料,其精准控制对于实现各种新颖的机械、光学和电子性能至关重要。近日,美国布鲁克海文国家实验室与哥伦比亚

利用三维飞秒激光光刻技术制备纳米晶体结构

  材料本身的光学性质不仅取决于其化学性质,还取决于其亚波长结构。由此而来的诸如光子晶体和超材料等,拓展了人们对于光学结构和光学材料的认识,展现出不同于自然材料的新奇现象和功能。然而,在过去的研究中,光学晶体的纳米结构集中于材料的二维表面。这是因为应力诱导的裂纹形成和传播使得高精度的三维体积加工具有

秒充秒放——未来的“超级电容”

  高性能的超级电容器电极的示意图。(左:场发射扫描电子显微镜和透射电子显微镜得到的显微图像。右:纳米结构的部分示意图。)  来自印度S.N. Bose国家基础科学研究中心的两位学者研发出了一种具有复合纳米结构的新型超级电容器,其拥有比现有的非复合超级电容器电极更优越的性能。由于