电容器的基础知识

电容器篇Vol.1电容器的基础知识电容器与电阻、电感并称为三大被动元件,其年产量在世界范围内已达约2万亿个 。电容器中使用最广泛的是陶瓷电容器,同时,绝缘性和稳定性俱佳的薄膜电容器、以大容量著称的电解电容器等各类电容器,也凭借各自的优势与特点为人们所用。电容器的原理与结构电容器的基本结构是间隔对置的2个电极(金属板)。施加直流电压(V)到2个电极上,电子瞬间聚集到其中一个电极上,该电极带负电,另一个电极则处于电子不足的状态,带正电。该状态在撤去直流电压后依旧存在。即,在2个电极之间蓄积了电荷(Q)。在电极间插入电介质(陶瓷、塑料薄膜等),通过电介质的极化,蓄积的电荷增加。表示电容器蓄积多少电荷的指标叫做电容量(C)(简称容量)。电容器的基本性质①“积蓄电荷”电容器也被称为蓄电器,顾名思义,就是通过采用大面积的电极构造以及高电容率的电介质,从而能够蓄积大量电荷。 接通电源施加直流电压,则电流瞬间流向导线,对电容器进行充电;当电极间......阅读全文

电力电容器简介

  电力电容器(英文名称powercapacitor),用于电力系统和电工设备的电容器。任意两块金属导体,中间用绝缘介质隔开,即构成一个电容器。电容器电容的大小,由其几何尺寸和两极板间绝缘介质的特性来决定。当电容器在交流电压下使用时,常以其无功功率表示电容器的容量,单位为乏或千乏。

直流支撑电容器简介

  直流支撑电容器,又称DC-Link电容器。直流支撑电容器,属于无源器件的一种。直流支撑电容器,现主要采用聚丙烯薄膜介质直流支撑电容器,其具有耐电压高、耐电流大、低阻抗、低电感、容量损耗小、漏电流小、温度性能好、充放电速度快、使用寿命长(约10万小时)、安全防爆稳定性好、无极性安装方便等优点。被广

透明柔性微型超级电容器

电子产品正朝着柔性化、透明化、轻薄化的趋势发展。研究高性能柔性透明电极材料与透明超级电容器对柔性电子产品的透明化具有重要的意义。最近,东华大学的王宏志课题组侯成义博士等人基于二硫化钼纳米材料开发了全透明柔性微芯片超级电容器。二硫化钼是一种过渡金属硫化物纳米材料,具有多样的晶格排布方式(1T, 2H,

电力电容器按用途分类

  电力电容器按用途可分为8种:①并联电容器。原称移相电容器。主要用于补偿电力系统感性负荷的无功功率,以提高功率因数,改善电压质量,降低线路损耗。②串联电容器。串联于工频高压输、配电线路中,用以补偿线路的分布感抗,提高系统的静、动态稳定性,改善线路的电压质量,加长送电距离和增大输送能力。③耦合电容器

电容器充电耗能吗

理想电容器是个储能原件其本身不耗能,当外电路对电容器充电时,消耗的外电路的电能,而当电容器对外电路放电时,电容器本身耗能。但实际电容器总存在着一些漏电阻,通过漏电阻的放电作用,电容器就要消耗一定的能量,品质越好的电容器其漏电阻也小,其耗能也越小。

电容器的基础知识

电容器篇Vol.1电容器的基础知识电容器与电阻、电感并称为三大被动元件,其年产量在世界范围内已达约2万亿个 。电容器中使用最广泛的是陶瓷电容器,同时,绝缘性和稳定性俱佳的薄膜电容器、以大容量著称的电解电容器等各类电容器,也凭借各自的优势与特点为人们所用。电容器的原理与结构电容器的基本结构是间隔对置的

介绍电力电容器损坏的原因

  近年来由于电力电容器投运越来越多,但由于管理不善及其他技术原因,常导致电力电容器损坏以致发生爆炸,原因有以下几种:  电容器内部元件击穿:主要是由于制造工艺不良引起的。  电容器对外壳绝缘损坏:电容器高压侧引出线由薄铜片制成,如果制造工艺不良,边缘不平有毛刺或严重弯折,其尖端容易产生电晕,电晕会

电力电容器的性能特点简介

  智能电力电容器为模块化结构,体积小、现场接线简单、维护方便。只需要增加模块数量即可实现无功补偿系统的扩容。  采用自愈式低压补偿电容器,电容器内置温度传感器,反映电容器内部发热程度,实现过温保护。  智能电力电容器内置投切开关模块。投切开关模块由晶闸管、磁保持继电器、过零触发导通电路和晶闸管保护

电力电容器的操作规程

  一、高压电容器组外露的导电部分,应有网状遮拦,进行外部巡视时,禁止将运行中电容器组的遮拦打开。  二、任何额定电压的电容器组,禁止带电荷合闸,每次断开后重新合闸,须在短路三分钟后(即经过放电后少许时间)方可进行。  三、更换电容器的保险丝,应在电容器没有电压时进行。故进行前,应对电容器放电。  

电容器的三大检测方法

电容器是一种容纳电荷的器件,是电子设备中大量使用的电子元件之一,广泛应用于电路中的隔直通交,耦合,旁路,滤波,调谐回路,能量转换,控制等方面。关于电容器的检测,主要分为三大类:固定电容器的检测、电解电容器的检测、可变电容器的检测。 一、固定电容器的检测1、检测10pF以下的小电容因10pF以下的固定

ELECTRONICON电力电容器全有系列介绍

  ELECTRONICON持续对先进的环境核心技术领域进行投资以保证产品质量达到高标准,确保我们的产品能满足全世界范围内各种技术标准的认证机构的要求。   ELECTRONICON电力电容器全有系列介绍:   1、 PK16系列: PK16系列电容可广泛应用于低电感的直流中间电路及用于直流滤波

芯片超级电容器又添新材料

  多年来,能装在芯片上的微小超级电容一直广受科学家追捧,决定电容器性能的关键是其电极材料,有潜力的“选手”包括石墨烯、碳化钛和多孔碳等。据德国《光谱》杂志网站近日报道,芬兰国家技术研究中心(VTT)研究团队最近把目光转向了一种“不可能”的弱电材料——多孔硅,为了把它变成强大的电容器,团队创新性地在

梨树叶“变身”正极-电容器性能大增

  缤纷的落叶,被科学“魔杖”轻点,竟变成性能良好的电容器正极。记者5日从南开大学获悉,该校材料科学与工程学院周震教授课题组以校园中寻常落叶为原料,制备出高效的正极材料,大大提高了钠离子电容器整体性能。这一成果发表在最新一期《先进功能材料》,还得到国家重点研发计划项目资助。  据介绍,因兼顾电池高能

超级电容器电极材料“瓶颈”获突破

  原料来自于储量丰富提取便利的铁盐、碳等,能在常温常压下进行合成,不产生有毒有害气体……近日,南京理工大学夏晖教授团队成功合成了非晶FeOOH/石墨烯复合纳米片,这种新新型非晶材料将大幅降低超级电容器的成本,极大地推动其商业化。   一直以来,超级电容器电极材料的研究集中在纳米晶材料上,但是纳米晶

电容器的放电速度于什么有关

RC电路充电公式Vc=E(1-e-(t/R*C)),,可知里面的t跟两端电压,电路电阻和电容量有关 ,电容值或电阻值愈小,时间常数也愈小,电容的充电和放电速度就愈快,反之亦然。

自愈式低压并联电容器功能特点

技术标准a、引用标准:GB/T12747.1—2004b、使用条件:室内使用环境温度-25℃~+55℃容量偏差:O~+15℃海拔≤2000米c、额定电压:0.13KV、0.28KV、0.415KV、0.45KV、0.48KV、0.525KV、0.69KV、0.75KV、0.48/√3、1.2/√3d

电容电感检测仪测量电容器

  1、测试电压电缆一端接到“电压输出”25V端子上,另一端的电缆夹分别夹在被测电容器组两极的连接母线上  2、测试电流信号电缆插在“电流输入”输入插头上,另一端连于钳形表上,注意钳形表钳口方向,电压线红夹子与钳形电流表前面板(有显示屏)为同极性,如果接反,测量电压和电流的相角的正负符号错误,也不能

电容器常见故障的修理方法

一、一般电容故障现象:电容开路、击穿、漏电、通电后击穿故障原因1、元器件开路电容器开路后,没有电容器的作用。不同电路中的电容器出现开路故障后,电路的具体故障现象不同。如滤波电容开路后出现交流声,耦合电容开路后无声等。2、元器件击穿电容器击穿后,失去电容器的作用,电容器两根引脚之间为通路,电容

美用黏土开发出高温超级电容器

  在自然界里,黏土丰富而廉价,却能成为一种超级电容器的关键成分。据物理学家组织网9月3日报道,美国莱斯大学科学家用黏土和一种电解液混合,开发出一种既能当电解液又能当隔离板使用的“复合板”,可作为一种新型高温超级电容器。相关论文在线发表于9月3日的《自然·科学报告》上。   “多年来,研究人员一直

大连化物所微型超级电容器研究获进展

  近日,中国科学院大连化学物理研究所二维材料与能源器件研究组研究员吴忠帅团队采用自下而上热解法制备出连续、均匀、超薄的硫掺杂石墨烯薄膜,并将其应用于高比容量微型超级电容器,相关研究成果发表在《美国化学会志》(J. Am. Chem. Soc.,DOI:10.1021/jacs.7b00805)上。

我国首个超级电容器材料标准发布

  近日,江苏国泰超威新材料有限公司(简称国泰超威)起草的《超级电容器用有机电解液规范》(计划号2015-0675T-SJ)通过了国家行业标准审定会。此标准也是我国超级电容器材料方面的第一个行业标准。  据报道,自2015年初该标准立项后,中电标协将该标准制定工作组设在了张家港市企业国泰超威,让其牵

石墨烯超级电容器助推轨道交通

超级电容在有轨电车和无轨电车上运用广泛,具有代表性。中国中车株机公司研制的9500法拉、7500法拉等多款超级电容器已大量运用于广州、宁波、武汉、淮安的有轨电车和宁波市196路无轨电车上。已运行大半年的广州超级电容现代有轨电车与广州塔和珠江融合,成为广州市的亮丽名片,受到各界欢迎。        

混合电容器的恒压(CV)脉冲充电(三)

  充电电压(无温度补偿)  ENYCAP 196 HVC混合储能电容器没有温度补偿也能充电。这些情况下应考虑一些约束条件,以便在必须支持极宽温度范围时延长使用寿命。  如果充电电压完全不可调节,则应设置充电的上限电压及温度限值;通常可设置为每电芯1.4 V和60 °C(图2)。  在较低温

电容器的容量大小与什么有关

一般电容内使用的极板间绝缘材料的介电常数是一个固定值,所以电容器其容量与极板两端所加电压无关,电容器两端电压变化时,电容器内的电量随之变化,其比Q/U是一个常数,也就是其电容量;但是对压电陶瓷类材料来说,因为它的介电常数与所加在上面的电压有关,使用该类材料作介质制成的电容器,在两极板间加上不同电压时

混合电容器的恒压(CV)脉冲充电(五)

  初次充电  当充电量超过标称电量的5%时就需要初次充电。图4流程图中的5-15分钟“ON时间”是恒压充电的典型时间范围,具体取决于应用的电能需求。  初次充电可使混合电容器足以满足下次使用的要求。如果所需电能显着少于规定的每电芯115 J(例如90 F电芯),则可减少“ON时间”。  在

混合电容器的恒压(CV)脉冲充电(二)

  但只要施加了源电压,UCVcharge升高就会导致高残余充电电流。所以必须确保系统在满充后不会过度充电。  约束条件:  所有类型的储能元件都要求下列参数保持在规格范围之内。  ● 最大和最小充电电压  ● 最大充电电流  ● 荷电状态:必须限制充电量Q =  ∫ Icharge * d

混合电容器的恒压(CV)脉冲充电(一)

  可充电储能电容器由于其灵活性、低维护要求和总成本较低而受到市场瞩目。  对于紧凑型应用,传统电解电容器是有益于环保的可选方案,并提供宽额定电压范围。但在输出要求超过几百毫瓦的情况下,它们会很快达到储能极限。  双电层电容器(EDLC)提供高功率、高能量密度和长工作寿命,但与电池一样,其工

决定电容器电容大小有哪些因素

影响电容大小的因素主要用三个方面第一是电容两个平行面面积的大小第二就是两个金属面之间的距离第三就是两个金属面之间的介质

混合电容器的恒压(CV)脉冲充电(四)

  开路电压检查  必须定时测量开路电压(OCV)。如果每个电芯的开路电压低于1.29 V,则必须施加初次充电循环(见图1)。  每秒测量一次已经足够。根据电路情况,增加测量次数会造成额外的漏电流,应避免出现这种情况。  正常工作/维护充电  短时充电脉冲(通常每隔约6-12小时持续1-3分