微波消解_AAS法分析银杏叶中金属元素

微波消解_AAS法分析银杏叶中金属元素摘 要 采用微波消解技术处理银杏叶样品, 用硝酸和双氧水(4 ∶1 , φ) 的混合消化液作为消解剂进行微波消解, 原子吸收光谱法测定了同一区域同一树龄6 颗不同植株银杏叶中钙、镁、钾、钠、铜和锌含量以及Zn/ Cu 值, 以研究同一区域不同植株中金属元素分布规律。方法加标回收率在9512 %~10416 %之间。研究结果表明, 同一地区同一树龄不同植株银杏树叶金属含量分布有差异。在6 颗植株中钙含量为39 586~48 320μg ·g - 1 , 镁含量为10 076~12 918 μg ·g - 1 , 钾含量为2 004~5 240 μg ·g - 1 , 钠含量为9105~35130μg ·g - 1 , 铜含量为1150~3105μg ·g - 1 , 锌含量为6170~8190 μg ·g - 1 , Zn/ Cu 值为2168~5193 。由此可见银杏叶中钙、镁、钾元素含量丰......阅读全文

原子吸收-AAS

原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。

ICP和AAS工作原理

AAS原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。AAS主要分火焰法和石墨炉法。火焰法现在大家常用的是C2H2+O2,也有极少数还在使用乙炔+笑气的(非常危险,易爆)。火焰燃烧使试样中的待测元素

AAS原子化器简介

AAS原子化器简介原子化器的功能是提供能量,使试样干燥、蒸发和原子化。入射光束在这里被基态原子吸收,因此也可把它视为“吸收池”。对原子化器的基本要求:必须具有足够高的原子化效率;必须具有良好的稳定性和重现形;操作简单及低的干扰水平等。常用的原子化器有火焰原子化器和非火焰原子化器。(一)火焰原子化器 

ICP和AAS工作原理

  AAS原理:   通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   AAS主要分火焰法和石墨炉法。   火焰法现在大家常用的是C2H2+O2,也有极少数还在使用乙炔+笑气的(非常危险,易爆)

aas是什么意思?

在近代科学上的意思:即原子吸收光谱,基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是本世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法。在数学领域的意思:即“角角边”判定定理,一种非常实用的三角形全等证明方法。在教育

AAS、AES、AFS异同点

 AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,本文就带大家辨一辨这“光谱三兄弟”。  “光谱三兄弟”简介  AAS(原子吸收光谱):  基于气态的基

ICP和AAS工作原理

  AAS原理:   通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   AAS主要分火焰法和石墨炉法。   火焰法现在大家常用的是C2H2+O2,也有极少数还在使用乙炔+笑气的(非常危险,易爆)

AAS、AES、AFS异同点

AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,本文就带大家辨一辨这“光谱三兄弟”。    “光谱三兄弟”简介     AAS(原子吸收光谱):   

AAS干扰及消除方法

原子吸收光谱法的主要干扰有物理干扰、化学干扰、电离干扰、光谱干扰和背景干扰等。一、物理干扰     物理干扰是指试液与标准溶液 物理性质有差异而产生的干扰。如粘度、表面张力或溶液的密度等的变化,影响样品的雾化和气溶胶到达火焰传送等引起原子吸收强度的变化而引起的干扰。    消除办法:配制与被测试样组

ICP和AAS的工作原理

电感耦合高频等离子体ICP:原理:利用氩等离子体产生的高温使试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。原子吸收 AAS:原理:通过原子化器将待

ICP和AAS的工作原理

电感耦合高频等离子体ICP:原理:利用氩等离子体产生的高温使试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。原子吸收 AAS:原理:通过原子化器将待

icp和AAS的工作原理

AAS原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。 AAS主要分火焰法和石墨炉法。火焰法现在大家常用的是C2H2+O2,也有极少数还在使用乙炔+笑气的(非常危险,易爆)。火焰燃烧使试样中的待测元

AAS、AES、AFS仪器分析特点

  AAS(原子吸收光谱):是基于气态的基态原子外层电子对紫外光和可见光的吸收为基础的分析方法。(基于物质所产生的原子蒸气对特征谱线(通常是待测元素的特征谱线)的吸收作用来进行元素定量分析的一种方法。  AES(原子发射光谱):原子发射光谱分析是根据原子所发射的光谱来测定物质的化学组分的。光谱分析就

光谱仪AAS的保养事项

1. 开机,检查各插头是否接触良好,调好狭缝位置,将仪器面板的所有旋钮回零再通电开机应先开低压,后开高压,关机则相反。2.   空心阴极灯需要定预热时间。灯电流由低到高慢慢升到规定值,防止突然升高,造成阴极溅射。有些低熔点元素灯如Sn、Pb等,使用时防止震动,工作后轻轻取 下,阴极向上放置

AAS光谱仪测试水质方法

  生活饮用水必须满足无污染、无退化、符合生理卫生这三个条件。生活饮用水必须不含有毒、有害、有异味的物质,水中微量元素的比例和人体的体液应相近,酸碱度应适中,呈弱碱性。国家颁布了《生活饮用水卫生标准》和《生活饮用水标准检验方法》。两个标准中就有针对金属元素含量的限定及检测方法,主要包括:Al、Fe、

AAS、AES、AFS三者对比

  AAS(原子吸收光谱)、AES(原子发射光谱)、AFS(原子荧光光谱)是三种常见的光谱分析技术,在食品、化工、环境等领域具有广泛的用途,由于其原理相近,结构类似,很多初学者对于这三种技术难以参透,本文就带大家辨一辨这“光谱三兄弟”。  “光谱三兄弟”简介  AAS(原子吸收光谱):  基于气态的

ICP与AAS的比较与选择

20世纪90年代以来,随着ICP技术的不断发展,它的优势越来越突出,大有取代AAS之势,而ICP—MS的问世,不但具有优于GFAAS的检出限,而且还能测量同位素,更显示了其强大的优势。ICP是否会完全取代AAS,它们各有什么优缺点,下面对ICP—MS(等离子体质谱)、ICP—AES(全谱直读等离子体

原子吸收光谱法(AAS)

  原子吸收光谱法(AAS)具有灵敏度高、谱线简单、选择性好和不易受激发条件影响等待点,是痕量和超痕量元素分析的重要手段之一。  AAS常和分离与富集技术联用,来消除干扰和提高灵敏度。近年来,火焰原子吸收光谱法(FAAS)的应用研究,取得了很大进展,诸如原于捕集,缝管技术以反增感效应等新技术的开发研

关于AAS、AES、AFS的异同点

基本概念 AAS(原子吸收光谱):是基于气态的基态原子外层电子对紫外光和可见光的吸收为基础的分析方法。(基于物质所产生的原子蒸气对特征谱线(通常是待测元素的特征谱线)的吸收作用来进行元素定量分析的一种方法。 AES(原子发射光谱):原子发射光谱分析是根据原子所发射的光谱来测定物质的化学

原子吸收AAS元素分析方法铟In

1. 基本特性:   原子量 114.82   电离电位 5.8 (ev)   离解能 1.1 (ev)2. 样品处理:   HNO3+HF; HCL+H2SO4; HCL+H2SO4+HNO3;3. 分析条件   分析线: 303.9 nm   狭缝: 0.4 nm (火焰)         2.

AAS测定饼干中的铜和铅

AA 测定饼干中的铜和铅 饼干作为日常生活中必不可少的食品,与我们每个人密切相关。但是饼干在生产和运输的过程中,不可避免的与各种金属设备和金属容器相接触,从而产生重金属污染。本方法使用原子吸收石墨炉方法对市场上一种饼干中的铜和铅重金属元素进行测定。 ■ 前处理方法 称样0.5g,加

HRCS-AAS法分析矿石样本

【矿石样本中主元素和微量元素的测定】 采矿业送检的样本中金属元素的含量变化非常大,而这种变化大多数都是强盐性基质元素的变化,元素含量的变化对实验分析技术提出了新的挑战和要求。本文介绍的HR-CS AAS高分辨连续光源原子吸收光谱仪分析方法则是电感耦合等离子体发射光谱分析法最好的替代解决方案

原子吸收AAS元素分析方法铍Be

原子吸收AAS--元素分析方法--铍Be1. 基本特性:   原子量 9.0122   电离电位 9.3 (ev)   离解能 4.6 (ev)2. 样品处理:   HCL; HNO3; HCL+H2O2; HCLO4+HNO3+HF;   KOH; Na2CO3+H3BO3; H3PO4.3. 分

原子吸收AAS元素分析方法砷As

原子吸收AAS--元素分析方法--砷As1. 基本特性:   原子量 74.922   电离电位 9.8 (ev)   离解能 4.9 (ev)2. 样品处理:   HNO3+H2SO4; HNO3+HF;HNO3+H2SO4+HCLO4;   HBF4+HNO3+H2O(2:3:5);Na2O2+

AAS光谱仪的基本理论

  原子吸收分光光度计  一、基本原理   原子吸收光谱仪又称原子吸收分光光度计,是根据物质基态原子蒸汽对特征辐射吸收的作用来进行金属元素分析。它能够灵敏可靠地测定微量或痕量元素。   AAS光谱仪一般由四大部分组成:  即光源(单色锐线辐射源)。  试样原子化器。  单色器。  数据处理系统(包括

ICP—MS、ICPAES、AAS应用篇?

    随着ICP-AES的流行,使很多实验室在思考购买一台ICP-AES是否是明智之举,还是留在原来可信赖的AAS上。现在一个新技术lCP-MS已呈现在世上,虽然价格较高,但ICP-MS具有ICP-AES的优点及比石墨炉原子吸收(GFAAS)更低的检出限。  这篇文章简要地论述这三种技术(地地道道

ICP和AAS的工作原理是什么

电感耦合高频等离子体ICP:原理:利用氩等离子体产生的高温使试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。原子吸收 AAS:原理:通过原子化器将待

原子吸收AAS元素分析方法铍Be

1. 基本特性:   原子量 9.0122   电离电位 9.3 (ev)   离解能 4.6 (ev)2. 样品处理:   HCL; HNO3; HCL+H2O2; HCLO4+HNO3+HF;   KOH; Na2CO3+H3BO3; H3PO4.3. 分析条件   分析线 234.9 nm  

原子吸收AAS元素分析方法铟In

原子吸收AAS--元素分析方法--铟In1. 基本特性:   原子量 114.82   电离电位 5.8 (ev)   离解能 1.1 (ev)2. 样品处理:   HNO3+HF; HCL+H2SO4; HCL+H2SO4+HNO3;3. 分析条件   分析线: 303.9 nm   狭缝: 0.

AAS与ICP比较与选择方法知识

AAS顾名思义,就是原子吸收光谱法,该法具有检出限低、准确度高、选择性好(即干扰少)、分析速度快等优点。ICP原子发射光谱仪,是根据试样中被测元素的原子或离子,对各元素进行定性分析和定量分析的仪器,该仪器具有样品用量少,应用范围广且快速,灵敏和选择性好等特点。   ICP是否会完全取代AAS,它们各