Antpedia LOGO WIKI资讯

遗传学大牛用CRISPR/Cas识别SNPs

随着基因组编辑系统的发展,没有什么比CRISPR/Cas更简单的了。然而,在实践中,将该系统限定于预期的位点可能是具有挑战性的,尤其是两个或两个以上的位点只有一个单碱基差异的情况。哈佛大学Wyss生物启发工程研究所的Benjamin Pruitt指出:“Cas9是杂乱的。在许多情况下,它将高效地切割两个等位基因。”这是生物医学中的一个问题,因为研究人员设想修复受损的基因拷贝,而单独留下野生型基因。 现在,Pruitt与哈佛大学医学院著名遗传学家George Church实验室的临床研究员Alejandro Chavez合作,为这个问题设计了一个潜在的解决方案,发表在生命科学预印本网站BioRxiv上,George Church是本文的共同通讯作者。 Cas9可以承受引导性RNA和靶序列之间的单个不匹配,但它可能无法承受更多。因此,该研究小组设计了一个引导性RNA筛查,使用引导性RNA——每个包含两个相对于野生型序......阅读全文

遗传学大牛用CRISPR/Cas识别SNPs

  随着基因组编辑系统的发展,没有什么比CRISPR/Cas更简单的了。然而,在实践中,将该系统限定于预期的位点可能是具有挑战性的,尤其是两个或两个以上的位点只有一个单碱基差异的情况。哈佛大学Wyss生物启发工程研究所的Benjamin Pruitt指出:“Cas9是杂乱的。在许多情况下,它将高效地

遗传学大牛再发重要突破:双功能CRISPR-Cas9

  CRISPR-Cas9是细菌在漫长的进化过程中演化出的重要防御机制。这个监控体系能够根据引导RNA(gRNA)的指示,靶标并降解入侵者的遗传物质。现在,CRISPR-Cas9已经成为了炙手可热的基因组编辑工具,帮助世界各地的研究者们解决实际问题。近年来,这一技术在多个领域中展现了自己强大的实力,

遗传学大牛Nature Methods发布CRISPR重要成果

  CRISPR-Cas9系统使得研究人员能够编辑许多生物体和细胞类型的DNA序列。然而,科学家们也日益认识到可以利用它来激活基因的表达。为此,他们构建出了大量可激活Cas9蛋白的合成基因来研究基因功能或在潜在的治疗方法中弥补不充足的基因表达。  哈佛大学Wyss生物启发工程研究所核心教员、系统生物

遗传学大牛访谈:CRISPR系统的机遇和问题

  目前,一种新的革命性的基因组编辑工具,为基因工程开辟了新的途径。它就是规律成簇间隔短回文重复(CRISPR)和CRISPR相关(Cas)9系统。  一般而言,CRISPR-Cas系统一直在古菌和细菌中进化,作为它们适应性免疫机制的一部分。该系统的机制方面可以在文献中找到。在这些生物中发现的3种

遗传学大牛Nature Methods发表新成果 用CRISPR打造DNA条码

  生物通报道:细菌一直在与病毒或入侵核酸进行斗争,为此它们演化出了多种防御机制,CRISPR–Cas9适应性免疫系统就是其中之一。规律成簇的间隔短回文重复CRISPR与内切酶Cas9的组合,可以在引导RNA的指引下,靶标并切割入侵者的遗传物质。2012年研究者们利用这一特点,将CRISPR系统制成

遗传学大牛Science发现基因组新奥秘

  来自斯坦福大学,霍德华休斯医学院的一组研究人员发现,当基因组中相似的基因不断“弹出来”的时候,通常这些基因会丢失,但如果能被留下来(也就成为了多余基因),就会由于一个基因发生一次表达消减这一理论,而在哺乳动物中受到保护。  这一研究成果公布在5月20日的Science杂志上。文章的通讯作者是斯坦

遗传学大牛PNAS、Nature子刊连发新成果

  George M. Church是哈佛医学院的遗传学教授、Wyss研究所的核心成员。他被誉为是个人基因组学和合成生物学的先锋。1984年,Church和Walter Gilbert发表了首个直接基因组测序方法,该文章中的一些策略现在仍应用在二代测序技术中。此外,如今的多重化分子技术和条码式标签也

遗传学大牛PNAS、Nature子刊连发新成果

  George M. Church是哈佛医学院的遗传学教授、Wyss研究所的核心成员。他被誉为是个人基因组学和合成生物学的先锋。1984年,Church和Walter Gilbert发表了首个直接基因组测序方法,该文章中的一些策略现在仍应用在二代测序技术中。此外,如今的多重化分子技术和条码式标签也

遗传界大牛Nature子刊发布CRISPR-Cas9新工具

  来自哈佛医学院的研究人员开发出了一种预测软件,可以准确找出最有效的方法利用CRISPR-Cas9基因编辑技术来实现基因打靶。这项重要的研究成果发布在《自然方法》(Nature methods)杂志上。  领 导这一研究小组的是哈佛医学院著名遗传学教授、Wyss研究所的核心成员著名遗传学Georg

遗传学大牛PNAS公布一项最新测序技术

  未来个性化医学,医生可能仅仅通过分析一份唾液样品,就能快速收集到患者谋者疾病的患病风险,以及最适合他的治疗方式。然而目前的新一代技术依然是一个很费钱的事。  来自哈佛大学Wyss研究所的著名遗传学家George M. Church开发了一种新的电子DNA测序平台,这一平台基于生物工程纳米孔,能帮