二硫化钼2H1T相边界在催化析氢中的重要作用

氢能作为一种理想的绿色能源,是世界各国发展的战略和科学研究的热点。而通过电解水来制氢,有效且可再生循环,其关键在于催化剂。近年来,二硫化钼催化剂由于其催化活性高、稳定性好、资源丰富、成本低等特点在析氢反应中崭露头角。单层二硫化钼是由两层硫原子将一层钼原子夹杂在中间形成类似三明治的结构,是一个具有直接带隙的半导体。已有的研究结果表明,二硫化钼的催化活性主要来自于钼截止的边界,基面内催化活性很低。如何激活二硫化钼基面的催化活性,提升其在制氢应用中的潜力从而推动氢能的发展,成为最近几年国际上广受关注的科学问题。 近期,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件重点实验室N07组张广宇研究员与北京大学江颖教授及南开大学张立新教授课题组合作,发展了一种全新的激活和优化二硫化钼基面催化活性的方法。他们以大面积、高质量的单层二硫化钼为实验对象,结合前期发展的表面诱导相变技术,研究了一系列具有不同晶畴和相畴密度的样品的......阅读全文

二硫化钼2H1T相边界在催化析氢中的重要作用

  氢能作为一种理想的绿色能源,是世界各国发展的战略和科学研究的热点。而通过电解水来制氢,有效且可再生循环,其关键在于催化剂。近年来,二硫化钼催化剂由于其催化活性高、稳定性好、资源丰富、成本低等特点在析氢反应中崭露头角。单层二硫化钼是由两层硫原子将一层钼原子夹杂在中间形成类似三明治的结构,是一个具有

德国应用化学:新型催化体系实现高效电催化析氢

   近日,中国科学院大连化学物理研究所研究员刘健团队与大连理工大学研究员周思,联合天津大学教授梁骥团队,通过单原子催化剂改性碳载体的策略,增强载体与其上负载金属粒子间的相互作用,构筑了钴单原子催化剂掺杂碳载金属钌(Ru)纳米反应器,实现了电催化析氢反应中绿氢的高效制备,为碳载金属纳米催化剂性能的调

高效非贵金属析氢电催化研究获进展

  复旦大学材料科学系吴仁兵、方方教授团队在高效非贵金属析氢电催化剂方面获新进展,相关研究成果近日发表于《先进材料》。  氢能作为一种原料丰富、燃烧值高、零污染的清洁能源,被科学家和大众寄予了很高的期望。要想发展氢能技术,不可或缺的一步就是把水通过电化学反应转换成氢气,但析氢反应所需过电位较高,需要

中国科大电催化析氢材料设计取得进展

  “Less is more”是著名建筑师米斯×凡德洛说过的一句话,这种“少即多”的设计理念是提倡形式简单而反对过度浮华,认为简单的东西往往带给人们更多的享受。这个设计理念能否在材料科学领域有借鉴价值?近日,中国科学技术大学熊宇杰教授课题组完成的一项工作充分说明了“少即多”设计在电催化析氢材料设计

非贵金属析氢催化剂研究获进展

  近日,中国科学院合肥物质科学研究院强磁场科学中心、中国科学技术大学合肥微尺度物质科学国家实验室(筹)与材料系双聘研究员陈乾旺课题组发现,氮掺杂石墨烯层包覆的合金粒子作为酸性条件下电解水制氢(HER)催化剂,表现出优异的性能和循环稳定性。相关研究成果以Non-precious alloy enca

中国科大在电催化析氢研究方面取得进展

  氢被认为是环境友好的清洁能源,电催化分解水可以制备高纯氢气,在碱性介质中电解水是最有可能实现产业化制氢的技术。一直以来贵金属是该领域活性最高的催化剂,近年来科研人员持续探索致力于将过渡金属发展成高活性碱性析氢电催化剂以降低成本,然而很多催化剂的活性与贵金属相比还有很大的差距。将少量的贵金属与过渡

新研究:通过EMSI对单原子催化剂的调控催化析氢

  单原子催化剂已经正式发展近十年,其工作重点也慢慢从最初的制备/表征拓展至机理性研究。目前,金属单原子在催化反应中的作用和反应机理尚且还在初步探索阶段。构建合理的催化反应构-效关系对设计高性能单原子催化剂至关重要。金属-载体电子相互作用(EMSI)提供了一种通过金属和载体之间的电子转移调节负载金属

析氢反应电催化剂研究:新材料替换铂金

  复旦大学26日发布,该校材料科学系吴仁兵、方方教授团队在高效非贵金属析氢电催化剂方面获新进展,相关研究成果近日发表于国际期刊《先进材料》。图片来源于网络  氢能原料丰富、燃烧值高、零污染,被科学家和大众寄予厚望。要想发展氢能技术,不可或缺的一步就是把水通过电化学反应转换成氢气,这就是析氢反应。但

中国科大在碳基催化剂电催化析氢研究中取得进展

  近年来电解水制氢受到广泛关注,寻找能替代贵金属的廉价高效的电催化剂成为当下研究热点。石墨烯由于具有良好的导电性、优异的化学稳定性以及易于化学修饰等优点,引起了科研人员的广泛关注,人们致力于将其发展成为高活性的电解水制氢催化剂。已有研究结果表明通过氮等杂原子掺杂可以调控杂原子近邻碳原子的电子结构,

玻璃析晶电炉的资料

由于玻璃的内能较同组成的晶体为高,所以玻璃处于介稳状态,在一定条件下存在着自发地析出晶体的倾向。这种出现晶体的现象叫做析晶,又称失透或反玻璃化。测定玻璃析晶性能就是指测定玻璃的析晶温度范围,上限和下限以及在该温度范围内玻璃的析晶程度,根据测定结果可以制定合理的溶制,成形和热加工制度,从而避免析晶的产

新研究提出“双自建门控增强电催化析氢”策略

  电催化析氢是目前最有前途的绿色制氢技术之一,是实现可再生清洁能源的重要途径。近日,武汉大学一项关于双自建门控调控电催化析氢活性的最新研究,提出了一种“双自建门控”的策略调控催化剂的电子结构,实现了对催化剂本征活性的极大提升,并以研究性论文的形式,发表在《先进材料》。  电催化析氢反应过程中,缓慢

新研究提出“双自建门控增强电催化析氢”策略

电催化析氢是目前最有前途的绿色制氢技术之一,是实现可再生清洁能源的重要途径。近日,武汉大学一项关于双自建门控调控电催化析氢活性的最新研究,提出了一种“双自建门控”的策略调控催化剂的电子结构,实现了对催化剂本征活性的极大提升,并以研究性论文的形式,发表在《先进材料》。 电

中国科大在电催化析氢研究方面取得新进展

  近日,中国科学技术大学博士生苏建伟和杨阳(导师陈乾旺教授)通过理论计算,提出了将少量的贵金属钌与过渡金属钴合金化来提升钴催化活性的思想,并设计出了一种以金属有机框架化合物为前驱体来制备氮掺杂的类石墨烯层包裹合金内核复合结构的工艺。所制备的复合纳米结构作为碱性析氢电催化剂表现出与贵金属可比的析氢性

什么是析氧反应,析氢反应

吸氧腐蚀和析氢腐蚀吸氧腐蚀典型案例就是暴露在空气中的铁会生锈,或者一半在海水,一般在空气中的铁,在海水中的部分会生锈析氢腐蚀最常见的就是锌在盐酸或者稀硫酸中会发生反应生成氢气一个是吸收氧气,就是与氧发生反应一个是析出氢气,就是反应生成氢气环境是酸性溶液或者中性溶液,吸氧腐蚀是弱酸性溶液或中性溶液,析

方便地制备单层二硫化钼/二硫化钨量子点作为细胞成...

方便地制备单层二硫化钼/二硫化钨量子点作为细胞成像荧光探针和高效的析氢反应催化剂具有片层状结构的过渡金属二硫化物近年来被发现许多奇异的性质并引起了人们极大的研究兴趣。通常情况下烷基锂插层剥离的方法是化学法玻璃二硫化钼/二硫化钨纳米片层中最常见也是剥离效果最好的方法,它是通过烷基锂的插层进入二硫化钼/

楼雄文Science-Advances-全pH范围的高效稳定析氢催化剂!

  1.楼雄文Science Advances:全pH范围的高效稳定析氢催化剂!  近日,南洋理工大学的楼雄文教授课题组成功制备出一种高晶态的Ni掺杂FeP/C多孔纳米棒,并用于电化学析氢反应中。研究发现,该催化剂在全pH范围均具有高效且稳定的析氢活性,在10 mA cm−2电流密度下,酸性,中性和

化学所等石墨烯电催化分解水析氢领研究取得进展

  电催化分解水制氢是减少环境污染及实现可再生清洁能源的重要途径。开发高效、稳定的制氢催化剂具有重要的科学价值和现实意义。石墨烯材料因其具有比表面积大、导电性好、稳定性高等优势,被广泛应用于电催化分解水制氢的研究中。但目前为止,石墨烯材料还仅仅作为催化剂的载体使用,通过助催化剂的负载或者杂原子掺杂等

析氢和析氧过程发生的原因和机理

就是说,实际的电极反应在进行的时候,会发生阴极电位比理论值低,阳极电位比理论值高的情况,这就叫做过电位.如果阴极析出的是氢气,就叫析氢过电位,析氧过电位也一样.过电位是由于电极的极化而产生的,就是说实际的电极反应已经偏离了理想的电极反应.  析氢过电位(一定程度上)可以用塔菲尔常数衡量,塔菲尔常数越

过程工程所等发现高性能电催化析氢材料的微环境效应

  早在上世纪80年代,美国科学家就提出当电催化剂(或电活性物质)被固定于电极上或者三维导电结构材料中,构成一种微环境,其表现出的电化学性质与体相状态(即分散于溶液中)相比,会表现出巨大的差别,即为“微环境效应”。然而,至今人们还没有发现对这一效应有力的实验证据。  近期,中国科学院过程工程研究所绿

我国学者在电解水析氢催化材料研究领域取得新进展

  在国家自然科学基金项目(批准号:51871160,51671141,51471115)等资助下,天津大学新能源材料研究所杜希文、刘辉团队利用传统的物理加工工艺在银纳米晶中形成高密度堆垛层错,使得不具备催化活性的银转变成高析氢催化活性的材料。研究成果以“A Silver Catalyst Acti

CdS核金等离子体卫星纳米结构增强光催化析氢反应

通过使用半导体材料光催化将水分解产生氢气是将太阳能转化为清洁化学能的有前景的方法,并且已经引起了相当大的关注。然而,大多数半导体光催化剂由于其窄的光谱响应间隔和高的载流子复合速率而表现出低的光催化活性。目前已经开发了许多策略来处理这些问题,例如能带工程,形态剪裁,用金属或非金属助催化剂加载以

Mo掺杂Ni2P电催化析氢电极纳米材料研究中获进展

  近日,中国科学院合肥物质科学研究院固体物理研究所微纳技术与器件研究室李越课题组,在电催化析氢电极材料的构筑及应用方面研究取得进展,相关研究结果发表在Nanoscale上,文章被遴选为当期的Inside back cover。  氢能作为无污染的生态清洁能源,备受关注。电解水制氢是实现工业化、廉价

解释析氢和析氧过程发生的原因和机理

就是说,实际的电极反应在进行的时候,会发生阴极电位比理论值低,阳极电位比理论值高的情况,这就叫做过电位.如果阴极析出的是氢气,就叫析氢过电位,析氧过电位也一样.过电位是由于电极的极化而产生的,就是说实际的电极反应已经偏离了理想的电极反应.  析氢过电位(一定程度上)可以用塔菲尔常数衡量,塔菲尔常数越

我国学者成功合成新型高效催化剂——二硫化钼纳米片

  近期,固体所环境与能源纳米材料中心在常温常压下电催化氮气还原方面取得新进展。利用催化剂和电解质的相互作用,在抑制催化剂产氢活性的同时,提高了其催化氮气还原的能力。相关工作发表在期刊Advanced Energy Materials上。  氨是一种重要的化工原料,广泛应用于工业、农业,同时,也是一

我国学者以MoS2为原料成功合成新型电催化合成氨催化剂

  近期,固体所环境与能源纳米材料中心在常温常压下电催化氮气还原方面取得新进展。利用催化剂和电解质的相互作用,在抑制催化剂产氢活性的同时,提高了其催化氮气还原的能力。相关工作发表在期刊Advanced Energy Materials上。  氨是一种重要的化工原料,广泛应用于工业、农业,同时,也是一

福建物构所电解水制氢研究取得新进展

  电解水制氢是实现可持续氢经济的一项重要能源技术。它能够由多种可再生能源转变的电能驱动实现清洁、快速、集中地生产高纯度的氢气,从而实现将时间、空间分布不均匀的可再生能源转换为稳定的化学能。电催化剂是提高电解水系统能源效率的关键部分。开发廉价、高性能的析氢和析氧催化剂是促进电解水系统大规模化应用的基

弯曲晶界——石墨烯强度的提升剂

          莱斯大学的最新研究证明在一些特例中弯曲晶界可以提高多晶体的强度,而这为石墨烯的强化提供了途径,且同时会产生一个规模相当可观的电子转移能带。  上图中左侧图像是晶界的电脑模型,中间的图像是晶界显微模拟图像,这二者被认为与实际的晶界近乎完美的匹配,而右侧的图像取自于康奈尔大学的科学家

关于注射剂析晶处理方法的思考

Sample Text注射剂(本文指溶液型注射剂,以下相同)是用注射的方式将药物直接送入人体血管等部位的无菌制剂,其起效迅速,尤其是静脉注射剂,药物直接入血,它不同于通过粘膜或皮肤吸收后才能进入机体的给药制剂,因此对其质量要求更加严格。注射剂总的质量要求原则是必须疗效确切、用药安全、药品稳定。但是部

晶界弛豫可大幅提升纳米晶高温合金抗蠕变性能

如何有效提升热—力—时间耦合作用下晶界的结构稳定性,进而抑制晶界高温软化和扩散蠕变,成为长期以来材料领域的一个重大科学难题,也是发展高性能高温合金的主要瓶颈之一。 《中国科学报》从中国科学院金属研究所沈阳材料科学国家研究中心获悉,近期该中心卢柯院士团队与武汉大学教授梅青松合作,在这一科学难

增强非贵金属电催化剂析氢活性和稳定性之化学掺杂

金属和金属合金电催化活性趋势与电催化剂的电子结构和性质有关。同样,“促进”物种对某些电催化剂本征活性的影响已有报道。因此可利用掺杂来调整电催化剂的电子特性,将缺电子或富电子的物质引入主体材料,可以调整其费米能级,改善其它电学性能,进而增强其电催化活性。上述掺杂物种也可能改变催化中心的氧化态以改变其本