茉莉酸调控拟南芥生长素转运蛋白PIN2研究取得新进展

茉莉酸作为一种与抗逆性密切相关的植物激素,主要调控植物对昆虫侵害、病原菌侵染和机械伤害的抗性反应,同时也参与调控根系生长、配子发育及成熟衰老等发育过程。生长素主要在植物的生长发育过程中起调控作用。以前的研究证明,茉莉酸通过调控生长素的生物合成和极性运输来调节拟南芥侧根的形成。生长素的极性输出由极性定位于质膜上的PIN (PIN formed)蛋白介导完成,在植物生长发育过程中起重要调控作用。目前,关于生长素极性运输的研究是植物生物学的热点研究领域之一。 中国科学院遗传与发育生物学研究所基因组生物学研究中心李传友课题组的研究证明,茉莉酸调节PIN2蛋白的内吞和在细胞质膜上的积累。研究发现,低浓度茉莉酸可以抑制PIN2蛋白的内吞,而且这种作用是依赖ASA1介导的生长素生物合成和TIR1/AFBs介导的生长素信号转导。而高浓度茉莉酸可以降低野生型拟南芥中PIN2蛋白在细胞质膜上的积累,特别是在asa1-1突变体......阅读全文

茉莉酸调控拟南芥生长素转运蛋白PIN2研究取得新进展

  茉莉酸作为一种与抗逆性密切相关的植物激素,主要调控植物对昆虫侵害、病原菌侵染和机械伤害的抗性反应,同时也参与调控根系生长、配子发育及成熟衰老等发育过程。生长素主要在植物的生长发育过程中起调控作用。以前的研究证明,茉莉酸通过调控生长素的生物合成和极性运输来调节拟南芥侧根的形成。生长素

植物生长素的相关功能介绍

  虽然对激素作用机理有不同的解释,但是,无论哪一种解释都认为,激素必须首先与细胞内某种物质特异地结合,才能产生有效的调节作用。这种物质就是激素的受体。  1.激素受体:植物激素受体是指能与植物激素专一地结合的物质。这种物质能和相应的物质结合,识别激素信号,并将信号转化为一系列的生理生化反应,最终表

科学家阐明植物生长素调控植物差异性生长的分子机制

  4月3日, 福建农林大学海峡联合研究院园艺中心,中科院上海逆境生物学研究中心徐通达教授团队在国际权威杂志Nature上发表题为“TMK1-mediated auxin signalling regulates differential growth of the apical hook”的文章,

研究揭示生长素信号途径调控植物差异性生长的分子机制

  4月3日,《自然》(Nature)杂志在线发表了原中国科学院分子植物卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心徐通达(现福建农林大学海峡联合研究院园艺中心教授)研究组完成的题为TMK1-mediated auxin signalling regulates differentia

遗传发育所在拟南芥生长素合成与调控机理研究中取得进展

  生长素是调节植物生长发育的重要激素。生长素的原位合成、代谢、极性运输以及信号转导共同调控植物对环境信号和发育信号的响应。现有的证据表明,植物中生长素的从头合成存在色氨酸依赖和色氨酸不依赖两条途径。近年来对依赖于色氨酸生长素合成途径已有较为深入的认识,但是对于非依赖于色氨酸生长素合成途径的组成与调

研究揭示生长素信号途径调控植物差异性生长的分子机制

  4月3日,《自然》(Nature)杂志在线发表了原中国科学院分子植物卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心徐通达(现福建农林大学海峡联合研究院园艺中心教授)研究组完成的题为TMK1-mediated auxin signalling regulates differentia

生长素信号途径调控植物差异性生长的分子机制

  4月3日,《自然》(Nature)杂志在线发表了原中国科学院分子植物卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心徐通达(现福建农林大学海峡联合研究院园艺中心教授)研究组完成的题为TMK1-mediated auxin signalling regulates differentia

细胞质分析

  细胞膜包着的黏稠透明的物质,叫做细胞质(Cytoplasm)。在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。绿色植物的光合作用就是在叶绿体中进行的。在

细胞质基质

  细胞质基质又称胞质溶胶(cytosol)是细胞质中均质而半透明的胶体部分,充填于其它有形结构之间。细胞质基质的化学组成可按其分子量大小分为三类,即小分子、中等分子和大分子。小分子包括水、无机离子;属于中等分子的有脂类、糖类、氨基酸、核苷酸及其衍生物等;大分子则包括多糖、蛋白质、脂蛋白和RNA等。

细胞质分析

  细胞膜包着的黏稠透明的物质,叫做细胞质(Cytoplasm)。在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。绿色植物的光合作用就是在叶绿体中进行的。在

细胞质遗传

  细胞质遗传的物质基础是细胞质中的DNA,细胞质遗传在实践中的应用很广泛。  细胞质遗传的概念:由细胞质基因所决定的遗传现象和遗传规律,也称为非孟德尔遗传,核外遗传。  细胞质遗传的特性  1. 后代的表型象母亲( 又叫母系遗传,偏母遗传) ;  2. 不遵循孟德尔遗传,后代不出现一定的比例;  

生长素的作用

1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性

细胞质的概述

  为了使您更好的了解临床检验技师的相关内容,医学教育网特搜集相关资料供大家参考。  细胞质的概述  细胞质是由细胞膜包裹着的无色透明溶胶性物质。细胞质是细菌新陈代谢的重要场所。细胞质内有核蛋白体、质粒、胞质颗粒。细胞质含丰富的酶系统,参与营养物质的合成与分解,故细胞质是细菌蛋白质和酶类合成的重要场

细胞质的介绍

  细胞质(cytoplasm)是细胞质膜包围的除核区外的一切半透明、胶状、颗粒状物质的总称。含水量约80%。细胞质的主要成分为核糖体、贮藏物、多种酶类和中间代谢物、质粒、各种营养物和大分子的单体等,少数细菌还有类囊体、羧酶体、或伴孢晶体等。

细胞质的组成

  细胞质包括基质、细胞器和包含物,在生活状态下为透明的胶状物。  基质指细胞质内呈液态的部分,是细胞质的基本成分,主要含有多种可溶性酶、糖、无机盐和水等。  细胞器是分布于细胞质内、具有一定形态、在细胞生理活动中起重要作用的结构。它包括:线粒体、内质网、内网器、溶酶体、微丝、微管、中心粒等。

细胞质膜的概念

  真核生物除了具有细胞表面膜外,细胞质中还有许多由膜分隔成的各种细胞器,这些细胞器的膜结构与质膜相似,但功能有所不同,这些膜称为内膜(internal membrane)。内膜包括细胞核膜、内质网膜、高尔基体膜等。由于细菌没有内膜,所以细菌的细胞质膜代行胞质膜的作用。

细胞质研究史

  1665 英国人Robert Hook用自己设计与制造的显微镜(放大倍数为40-140倍,图1-1)观察了软木(栎树皮)的薄片,第一次描述了植物细胞的构造,并首次用拉丁文cella(小室)这个词来称呼他所看到的类似蜂巢的极小的封闭状小室(实际上只是观察到到纤维质的细胞壁)。  1672,1682

什么是细胞质?

  细胞质(cytoplasm)又称胞浆,是一种使细胞充满的凝胶状物质,由细胞质基质、内膜系统、细胞骨架和包涵物组成。  细胞质包括基质、细胞器和包含物,在生活状态下为透明的胶状物,是生命活动的主要场所。基质指细胞质内呈液态的部分,是细胞质的基本成分,主要含有多种可溶性酶、糖、无机盐和水等。细胞器是

细胞质的概述

  细胞质是由细胞膜包裹着的无色透明溶胶性物质。细胞质是细菌新陈代谢的重要场所。细胞质内有核蛋白体、质粒、胞质颗粒。细胞质含丰富的酶系统,参与营养物质的合成与分解,故细胞质是细菌蛋白质和酶类合成的重要场所。细胞质中含有多种颗粒。这些颗粒包括:  (1)核蛋白体:核蛋白体是蛋白质的合成场所。  (2)

细胞质谱技术

细胞质谱技术(CytoMS)是指直接对细胞进行分析的质谱技术,可追朔到15年以前,当时采用的是激光捕获微切割(LCM)从目标细胞上采集生物分子,然后在线或离线结合质谱进行分析,主要是蛋白质组学中采用此策略。单细胞免疫质谱技术(Single Cell ImmunoMS)是当前质谱新应用之一,采用多种不

脑脊液生长素的概述

  生长素是一种同化激素,能促进DNA、RNA及蛋白质的合成,加强细胞对氨基酸的摄取,与胰岛素有拮抗作用,能抑制糖的利用,促进脂肪分解,使血糖升高。脑垂体前叶富含此种激素,其分泌受下丘脑的生长素释放抑制激素和生长素释放激素的调节,病理情况可影响生长素的分泌。

生长素的生理作用

 一、教学目标1.概述植物生长素的生理作用。2.尝试探索生长素类似物促进插条生根的zui适浓度。二、教学重点和难点1.教学重点 生长素的生理作用。2.教学难点 探究活动:探索生长素类似物促进插条生根的zui适浓度。三、教学策略1.图形引导,问题入手。 阅读生物学方面的资料时,要能读懂模式图、示意图和

生长素的生理作用

1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性

生长素的基本作用

生长素最基本的作用是促进细胞的伸长生长,这种促进作用,在一些离体器官如胚芽鞘或黄化茎切段中尤为明显。生长素为什么能促进细胞的伸长生长,又以什么方式起作用的?植物细胞的最外部是细胞壁,细胞若要伸长生长即增加其体积,细胞壁就必须相应扩大。细胞壁要扩大,就首先需要软化与松弛,使细胞壁可塑性加大,同时合成新

生长素的存在部位

生长素在低等和高等植物中普遍存在。生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。用胚芽鞘切段证明植物体内的生长素通常只能从植物的形态上端(根尖分生区或芽)向下端(茎)运输,而不能相反

生长素的主要作用

1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性

生长素的研究历史

C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的

生长素的研究历史

C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的

我国学者揭示揭示OsPID调控水稻花器官发育分子机制

  水稻是世界上一半以上人口的主粮,其产量主要受每穗粒数、每株穗数、千粒重等影响。其中每穗粒数与每穗颖花数密切相关,因此颖花的发生和发育直接影响了水稻的产量。在拟南芥中,PINOID (PID)可以通过调控生长素外流载体PIN家族蛋白的亚细胞定位来调节生长素的分布(Friml et al., 200

细胞质遗传相关知识

细胞质遗传(cytoplasmic inheritance)是指子代的性状由细胞质内的基因所控制的遗传现象和遗传规律。细胞质基因:线粒体、叶绿体中的DNA上和细胞质粒上的基因。细胞质遗传现象表明,细胞质内具有控制某些性状的遗传物质——细胞质基因(简称质基因)。但是,科学家用电子显微镜观察,在细胞质内