Antpedia LOGO WIKI资讯

实验室光谱仪器电感耦合等离子体原子/离子荧光光谱

对 ICP-AFS/IFS 研究工作的主要方向是追求被测元素,尤其是难熔金属元素的检出限,使该技术能满足痕量、超痕 量金属元素分析的要求。由于 ICP 优异的高温性能,增加 ICP 的入射功率,可增大待测元素原子的电离度,增加待测元素粒子数密度,因此,ICP-IFS 是解决难熔元素原子荧光光谱测定灵敏度差的途径之一。为实现此目的,详细研究等离子体功率、荧光信号观测高度等是必须的。对等离子体离子荧光光谱研究,除了重视 ICP 作为离子化器的研究外,寻找实用的离子荧光激发光源是另一重要内容。虽然染 料激光器可以提供从紫外到可见光波长范围的极高强度的激发光, 但将染料激光器与 ICP 等设备结合进而实现离子荧光光谱对难熔元素的测定,这样的装置只能在实验室进行,对系统进行商品化并在实际应用中加以推广。由于染料激光器的高成本、难操作以及使用上的不方便,使其商品化基本上是不可能的。因此,寻找经济、 实......阅读全文

实验室光谱仪器--电感耦合等离子体原子/离子荧光光谱

对 ICP-AFS/IFS 研究工作的主要方向是追求被测元素,尤其是难熔金属元素的检出限,使该技术能满足痕量、超痕 量金属元素分析的要求。由于 ICP 优异的高温性能,增加 ICP 的入射功率,可增大待测元素原子的电离度,增加待测元素粒子数密度,因此,ICP-IFS 是解决难熔元素原子荧光光谱测定灵

实验室光谱仪器--电感耦合等离子体原子/离子荧光光谱

1、 空心阴极灯的强短脉冲供电电源与 DC-HCL 或 CP-HCL 供电电源相比,HCMP-HCL 供电电源需要进行特殊设计,电源要提供微秒宽度的脉冲,峰值工作电流 一般为几安培,最大可到十几安培。下图所示为强短脉冲电源示意图。强短脉冲供电时,HCL 工作在大电流状态,电流一般为几安培,对个别元素

电感耦合等离子体原子/离子荧光光谱激发光源分类

1、 空心阴极灯的强短脉冲供电电源 与 DC-HCL 或 CP-HCL 供电电源相比,HCMP-HCL 供电电源需要进行特殊设计,电源要提供微秒宽度的脉冲,峰值工作电流 一般为几安培,大可到十几安培。下图所示为强短脉冲电源示意图。     强短脉冲供电时,HCL 工作在大电流状态,电流

电感耦合等离子体光谱仪原理

电感耦合等离子体光谱仪原理介绍: 高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有三个同轴氢气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。 电感耦合等

电感耦合等离子体原子发射光谱法的概念

电感耦合等离子体原子发射光谱法(ICP-AES)是以电感耦合等离子体焰炬为激发光源的一类光谱分析方法,它是一种由原子发射光谱法衍生出来的新型分析技术。

电感耦合等离子体原子发射光谱法方法介绍

电感耦合等离子体原子发射光谱法( Inductively Coupled Plasma-Atomic Emission Spectrometry,简称ICP-AES),是以电感耦合等离子矩为激发光源的一类光谱分析方法。由于具有检出限低、准确度及精密度高、分析速度快、线性范宽等优点,因此在国外,ICP

电感耦合等离子体原子发射光谱仪结构分析

1、ICP光源ICP光源是ICP发射光谱仪的核心部分。原子发射光谱常用的激发源有火焰,电弧(直流电弧、交流电弧)、火花(高压火花、低压火花)、辉光放电、等离子体(直流等离子体DCP、电感耦合等离子体ICP、微波感生等离子体MIP、微波耦合等离子体CMP)。等离子体光源是20世纪60年代发展起来的一类

电感耦合等离子体原子发射光谱仪应用说明

 一.材料类   1.难熔合金的元素含量分析;   2、高纯有色金属及其合金的元素微量分析;   3、金属材料、电源材料、贵金属研究和生产用微量元素分析   4.电子、通讯材料及其包装材料中的有害物质元素含量检测   5.医疗器械及其包装材料中的有害物质及化学成分   二.环境与安全类

电感耦合等离子体原子发射光谱仪维护保养

(1)使用环境 等离子体光谱与其它大型精密仪器一样,需要在一定的环境条件下运行,否则,不仅影响仪器的性能,甚至造成损坏,缩短寿命等。根据光学仪器的特点,对环境温度和湿度有一定要求。如果温度变化太大,光学组件受温度变化的影响就会产生谱线漂移,造成测定数据不稳定;而如果环境湿度过大,仪器的光学部件,特别

电感耦合等离子体原子发射光谱仪工作原理

一、原子发射光谱的产生原子发射光谱是原子光谱的一种,有关原子光谱的种类参见第1章节有关内容。原子发射光谱是处于激发态的待测元素原子回到基态时发射的谱线原子发射光谱法包括2个主要的过程,即:激发过程和发射过程。(1) 激发过程 由光源提供能量使样品蒸发、形成气态原子、并进一步使气态原子激发至高能态。原