Antpedia LOGO WIKI资讯

395MHz455MHzDoherty放大器一种紧凑型实现方法(一)

摘要:本文描述了395MHz-455MHz Doherty放大器的一种紧凑型设计方法。在本文中,90度混合电桥被用作Doherty合成器,用来替代传统的四分之一波长线来实现Doherty合成器,随着应用频率的降低四分之一波长线将占用更大的布板面积,甚至有的时候无法实现。在本文中,我们设计实现了一种非常紧凑型的Doherty放大器,并将和基于相同输入输出匹配电路实现的平衡式AB类放大器做性能对比,最终我们设计实现了在输出功率43dBm时,漏极效率43%,未校正邻道泄漏比-33dBc,输出信号的峰均比7.5dB。早在1936年,W.H. Doherty首次提出了一种高效节能的放大器结构[1]。由于效率高,结构简单并且不需要复杂的外围电路,Doherty放大器获得了非常广泛的应用。典型的Doherty放大器结构框图如图1所示,由载波放大器,峰值放大器以及Doherty合成器组成。传统的Doherty合成器会随着频率的降低占用更大的......阅读全文

395MHz-455MHz Doherty放大器一种紧凑型实现方法(一)

摘要:本文描述了395MHz-455MHz Doherty放大器的一种紧凑型设计方法。在本文中,90度混合电桥被用作Doherty合成器,用来替代传统的四分之一波长线来实现Doherty合成器,随着应用频率的降低四分之一波长线将占用更大的布板面积,甚至有的时候无法实现。在本文中,我们设计实现了一

395MHz-455MHz Doherty放大器一种紧凑型实现方法(四)

4、结论本文提出了一种395MHz到455MHz紧凑型Doherty放大器的设计方法, 采用了飞思卡尔公司的LDMOS器件MRFE6S9045N。设计实现了在单载波W-CDMA输出平均功率为43dBm时,漏极效率高于43%,相对于传统的Doherty放大器设计方法,本文呈现了一种紧凑型Doh

395MHz-455MHz Doherty放大器一种紧凑型实现方法(三)

3、测试结果在本文中,将用连续波单音信号测试所设计的功率放大器性能。选取395MHz和455MHz测试结果罗列如下。在395MHz处,测试所得的增益和效率对输出功率的曲线如图6所示,测试数据显示在输出功率为43dBm时,功放漏极效率为43%, 饱和输出功率高于49dBm。图6、395MHz 增益和效

395MHz-455MHz Doherty放大器一种紧凑型实现方法(二)

通过上述分析,我们可以看出90度混合电桥和传统的Doherty合成器具有完全相同的电气性能,对于低频应用而言,90度混合电桥实现面积更小。Doherty放大器的基本工作原理是有源负载牵引[3]。正如图1所示,Doherty放大器由载波放大器和峰值放大器组成,Doherty合成器将在载波放大器和峰值放

基于ADS平台不对称Doherty功率放大器的仿真设计(一)

为在高线性的前提下提高WCDMA基站系统中功率放大器的效率,仿真设计了一款工作于2.14 GHz频段不对称功率驱动的Deherty功率放大器。基于ADS平台,采用MRF6S21140H LDMOS晶体管,通过优化载波放大器和峰值放大器的栅极偏置电压改善三阶互调失真(IMD3),同时通过调节输

一种直接测量运算放大器输入差分电容的方法(一)

简介输入电容可能会成为高阻抗和高频运算放大器(op amp)应用的一个主要规格。值得注意的是,当光电二极管的结电容较小时,运算放大器的输入电容会成为噪声和带宽问题的主导因素。运算放大器的输入电容和反馈电阻在放大器的响应中产生一个极点,从而影响稳定性并增加较高频率下的噪声增益。因此,稳定性和相

基于ADS平台改进型Doherty电路设计与仿真(一)

摘要:首先理论上推导,再通过Advanced design system( ADS) 平台仿真验证,仿真设计一款工作于2. 14 GHz 频段改进型Doherty功率放大器,与传统Doherty电路相比,其输出合路部分采用了3dB混合电桥进行合路,结构简单,无需调整主放大器和峰值放大器的补偿

一种直接测量运算放大器输入差分电容的方法(二)

挑战:找到合适的设备和实际测试设置如图1所示,将2 kΩ电阻串联在运算放大器的输出端,以将激励从电压源转换为电流源。这将允许节点“r”中存在小电压(它不会与在运算放大器的同相引脚中所看到的电压相差太远),并将导致小电流流入待测CDM的输入端之间。当然,现在的输出电压很小(由待测器件(DUT)

一种直接测量运算放大器输入差分电容的方法(三)

结果与讨论首先,在测量电路板的板电容时没有使用DUT。图4所示电路板的测量条件是16 fF电容且没有DUT。这是一个相当小的电容,可以忽略不计,因为通常CDM的预期值为几百至几千fF。Most JFET and CMOS input op amps were measurable using t

一种直接测量运算放大器输入差分电容的方法(四)

表2.电源为±5 V时,LT1792在不同频率下的阻抗测量同时,双极性输入运算放大器几乎与其FET同类产品一样简单。但是,由于它们与CDM电流并联,因此它们的高输入偏置电流和电流噪声较为明显。此外,双极性差分对输入内在的固有差分电阻RDM也与CDM并联。表3以低噪声精密放大器ADA4004为例,显示