Antpedia LOGO WIKI资讯

科学家合成人工细胞可自我进化成生命形态

据国外媒体报道,美国哈佛大学医学院的科学家日前称,他们最近正在实验室人工构造一种单细胞模型,这种模型能够自我复制和进化,已经具备了“生命”的基本特征。这表明科学家们已经可以将没有生命的物质合成为新的生命形态。 在实验室人工构造的单细胞模型 人工合成生命即将诞生 在意大利佛罗伦萨举行的第15届“生命起源国际研讨会”上,美国的科学家公布了他们目前的实验情况。这一消息听起来好象是天方夜谭,但是科学家们正在为此而努力。美国哈佛大学医学院分子生物学家杰克-斯佐斯泰克说,他目前正试图建立一种单细胞模型,该模型几乎可以算得上是一种新的“生命”形态。斯佐斯泰克的原型细胞由脂肪分子构成。脂肪分子可以捕获一些核酸,而核酸中则包含了复制源代码。再由外来能源(如太阳或化学反应)提供能量,这些原型细胞可以形成一个自我复制、自我进化的生命系统,从而满足生命环境的需要。也许这种生命与我们地球上的生命并非完全相同,但他们可以在宇宙的任意空间里形成和存......阅读全文

中国科学家设计出“新型生物人工肝系统”

  从中科院上海生科院生物化学与细胞生物学研究所获悉,该所惠利健研究团队与南京大学附属鼓楼医院丁义涛团队等成功设计出全新的基于“hiHep细胞”的生物人工肝系统,可显着提升肝衰竭猪的存活率,并有望延续肝衰竭患者的生命。相关成果已于1月16日发表在国际著名学术期刊《细胞研究》。  年初,该团队已经展开

ACS Cent Sci:制造出可与细菌细胞通信的人工细胞

  在一项新的研究中,来自意大利特伦托大学的Sheref Mansy和同事们开发出通过细菌版本图灵测试(Turing Test)的人工细胞。图灵测试指的是开发人工智能来与人类智能竞争。  图灵测试是由数学家阿兰-图灵在半个多世纪前设计的。这项测试声称如果一台计算机能够欺骗一个人认为她或他正在与一个真

专访中科院惠利健 人源性人工肝入选年度十大医学进展

  当婴儿呱呱坠地、胚胎干细胞分化为成体细胞的那一刻,多数细胞的功能和命运似乎被定格,并开启了不可逆的时钟发条。然而肿瘤组织中层出不穷的基因突变和永生化癌细胞,却以最惨烈的方式昭示着细胞命运的其他可能。随着克隆技术和人工诱导多能干细胞的出现,改写细胞命运的传奇更走入了再生医学和肿瘤研究的聚光灯下。 

新生命如何在实验室“被创造”

CFP/图带有人工合成基因组的支原体,这是一种能够自我复制的新物种,科学家称之为“辛西娅”克雷格·文特尔(左)和密尔顿·史密斯是这一划时代实验的负责人创造“辛西娅”团队的主要成员  2010年5月20日,美国私立科研机构克雷格·文特尔研究所的一个科学家小组在美国《科学》杂志上报告

人工合成生命的时代要来了?

  在我们生存的自然界里,除了单细胞生物、少数低等生物,绝大多数的生物从小到大都遵循着一个相同的规律——由一个受精卵发育形成。  就像是父母的精卵结合,产生了受精卵,受精卵开始快速的生长分裂,经历四细胞期、八细胞期后形成桑椹胚,直到胚胎干细胞有了明显的分化进而发育成囊胚,原肠胚,最后发育成一个各器官

《自然》邀专家评价“人造生命”诞生

  美国生物学家Craig Venter在实验室中制造出世界首个人造细胞,他将一段人工合成的基因组进行重塑和修饰后,植入另一种无DNA的细菌壳中,从而人工制造了一种具有自我复制功能的支原体丝状菌。《自然》杂志邀请了八位不同专业领域的专家,就人造细胞对其各自领域的影响和意义给出自己的评价和意见。 1

从人类基因组到人造生命:克雷格·文特尔领路生命科学

  自人类基因组计划 (Human Genome Project,HGP) 完成以后,生命科学进入“后基因组时代”,生物信息学、计算生物学、系统生物学以及合成生物学等崭新学科不断出现,并得到快速发展。前不久,首个“具有人造DNA的活细胞”在克雷格·文特尔(J. Craig Venter)的研究所横空

“人造生命” 我国科学家“创造”世界首例单染色体真核细胞

  日前,中科院分子植物科学卓越创新中心/植物生理生态研究所合成生物学重点实验室覃重军研究团队与合作者,在国际上首次人工创建了单条染色体的真核细胞:把酿酒酵母细胞里原本天然的16条染色体,人工融合成单条染色体,且仍具有正常的细胞功能。既改变了染色体的结构,又仍保有生命的“活性”,人工蜕变出一个全新细

研究揭示简单机械力实现人造细胞分裂

人造细胞分裂 图片来源:Jan Steinkühler  地球上生命的成功是基于活细胞分裂成两个子细胞的惊人能力。在这样的分裂过程中,细胞外膜必须经历一系列的形态转变,最终膜分裂。近日,德国马普学会胶体与界面研究所和聚合物研究所的研究人员,通过在人工细胞膜上固定低密度的蛋白质,现在已经实现了对这些形

机械力实现人造细胞分裂

  地球上生命的成功是基于活细胞分裂成两个子细胞的惊人能力。在这样的分裂过程中,细胞外膜必须经历一系列的形态转变,最终膜分裂。近日,德国马普学会胶体与界面研究所和聚合物研究所的研究人员,通过在人工细胞膜上固定低密度的蛋白质,现在已经实现了对这些形状转变和由此产生的分裂过程前所未有的控制。  为了控制

机械力实现人造细胞分裂

  地球上生命的成功是基于活细胞分裂成两个子细胞的惊人能力。在这样的分裂过程中,细胞外膜必须经历一系列的形态转变,最终膜分裂。近日,德国马普学会胶体与界面研究所和聚合物研究所的研究人员,通过在人工细胞膜上固定低密度的蛋白质,现在已经实现了对这些形状转变和由此产生的分裂过程前所未有的控制。  为了控制

“创造生命”的合成生物学

  导语:“像组装电路一样组装生命”,只是合成生物学研究思路的形象比喻。有人预言合成生物学将带来人类历史上的第三次工业革命。  最近,很多媒体报道了美国生物学家克雷格·文特尔的研究成果:在实验室中重塑“丝状支原体丝状亚种”的DNA,并将其植入去除了遗传物质的山羊支原体体内,创造出历史上首个

中科院两科学家携手推进“生物人工肝”产业化

  中科院上海生物化学与细胞生物学研究所惠利健研究员团队与多家单位科学家合作,突破“类肝细胞”体外培养技术,成功研制出生物人工肝系统。如今,获得该技术全球独家使用许可的上海微知卓生物科技有限公司在上海嘉定建成了国内首条人源性生物人工肝临床研发生产线。  据悉,该生产线将于下月投入运行,预计年产量可达

科技部“十二五”现代生物制造科技发展专项规划发布

关于印发十二五现代生物制造科技发展专项规划的通知国科发计〔2011〕587号  各省、自治区、直辖市、计划单列市科技厅(委、局),新疆生产建设兵团科技局,国务院有关部门科技主管单位,各有关单位:  为了贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,指导现代生物制造科技发展,加

新生命如何在实验室“被创造”

  第三部曲的演奏  克雷格·文特尔研究所的丹尼尔·吉布森小组选取了一种名为丝状支原体的细菌(供体细菌),其基因组只有108万个碱基对。研究人员把它的染色体(DNA)解码,然后利用化学方法一点一点地重新排列这种支原体的DNA序列,即对四个碱基对腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)

科学怪人直击衰老奥秘 寻找长寿基因

   报道:美国J. Craig Venter研究所的Craig Venter博士是科学界里一位著名的生物学家与企业家。由于其在人造人,以及对基因研究等方面的偏执热爱,因此被戏称为“科学怪人(Bad boy of Science)”。   3月4日Venter博士宣布建立一家新公司:Hum

“人造生命”诞生引争议 科学家被指“扮演上帝”

  一项实验结果立即引起全球的关注。有人认为它预示着生命科学可能进入新纪元,也有一些严厉的批评者指责实验的操纵者“想扮演上帝的角色”。  总有人试图解答生命的起源。如今,这个星球上信仰上帝的人们,或是坚定的达尔文主义者,可能遭遇一个突然“闯入”的强敌。  2010年5月21日,《科学》杂志报告了世界

第三代生物人工肝在南京鼓楼医院临床应用成功

   “就像苹果手机4S后又来了5S、6S,随着研究不断推进,生物人工肝支持系统也在不断更新,第三代生物人工肝的临床应用近日获得成功。”昨天,鼓楼医院肝胆外科带头人丁义涛教授宣布,该院这项处于国际前沿的新研究将为更多肝衰患者赢得与死神赛跑的时间,依靠这一生物人工肝,部分患者的衰竭肝脏甚至可以获得“再

“用生命创造生命”一个名叫辛西娅的人造细胞

  早在1932年的《美丽新世界》里,赫胥黎就描述了有一天人类将在实验室内以人工方式制造婴儿,他在一张图纸上标明了如何“造人”的步骤。从宇宙大爆炸以来,地球上的生命都是自发演变的,以至于1996年克隆羊“多利”因为基因复制而引起轩然大波。然而,在今年3月24日出版的美国著名学术期刊《科学》上,美国科

探索生命科学前沿 彰显上海科研力量

站位全球热点方向,聚焦前沿性原始创新,上海的科研力量,正在对生命科学的探索中绽放耀眼光芒。整合国内外跨学科创新资源,具有全球影响力的基础性新发现正抽芽、开花、结果。  阿尔茨海默症新药将全球试验  日前,由中国海洋大学、中国科学院上海药物研究所和上海绿谷制药联合研发的治疗阿尔茨海默症新药“甘露寡糖二

“一篇论文”变成“一个产品”

  中科院上海生物化学与细胞生物学研究所惠利健研究员团队与多家单位科学家合作,突破“类肝细胞”体外培养技术,成功研制出生物人工肝系统。如今,获得该技术全球独家使用许可的上海微知卓生物科技有限公司在上海嘉定建成了国内首条人源性生物人工肝临床研发生产线。  据悉,该生产线将于下月投入运行,预计年产量可达

人工合成生命需法规约束

  日前,国际学术期刊《自然》同时在线发表了两篇将酵母染色体融合的成果,一篇来自纽约大学医学院教授杰夫·博克团队,另一篇则来自中国科学院分子植物科学卓越创新中心、植物生理生态研究所合成生物学重点实验室覃重军研究团队及其合作者。  酵母染色体融合是人工合成生命的创新,也是中国科学家继20世纪60年代人

“人造生命”:福音还是怪物?

  5 月底,美国著名分子生物学家和遗传学家文特尔和其团队成功合成了世界上第一例人造生命,文特尔为这个“人造生命”起名为“辛西娅”,它也是世界上第一种以计算机为“父母”,并可自我复制的生物。  “阴森古堡、雷电交加、驼背助手”这些传说中的场景都没有出现。不过,克雷格.文特尔(Craig V

国家基金委八大学部公布“优先发展领域及主要研究方向”

  “十三五”期间,通过支持我国优势学科和交叉学科的重要前沿方向,以及从国家重大需求中凝练可望取得重大原始创新的研究方向,进一步提升我国主要学科的国际地位,提高科学技术满足国家重大需求的能力。各科学部遴选优先发展领域及其主要研究方向的原则是:  (1)在重大前沿领域突出学科交叉,注重多学科协同攻关,

人造生命: 超越自然还是带来毁灭?

  人类是否能够扮演上帝的角色创造生命?在科学家眼中,细胞就是一套积木,将基因“积木”和蛋白质“积木”重新洗牌组合,也许就能创造出生命体——具有新功能的新型细胞,比如能够产生新型材料的细胞或是能够清理原油泄漏污染的细菌。   组装生命   在波士顿海洋工业园区——拥有40年历史的加州的“硅谷”—

薛京伦:中国尚无人造生命研究 急功近利体制使然

人造生命诞生?复旦生命科学学院首席教授:距离应用还早  上周,64岁的美国科学家克雷格·文特尔向外界公布了一个让世界震惊的消息——他和他的团队成功实施了人造DNA激活细胞的实验,全球第一个 “人造细胞”在他们的实验室中诞生了。  消息引发舆论大哗,有人称其开创了前所未有的操控生命的方式,等于创造了“

科学家扮演“上帝” “人造生命”能应对能源危机?

  Synthia,若干年后,人类科技的里程碑上将铭刻这个名字,尽管它只是一个细胞。与千千万万细胞的区别不只是它上面留下了46名科学家的名字,以及 “生存”、“犯错”、“战胜”、“用生命创造生命”等评价——这是个人造的细胞。克雷格·文特尔,制造这个人造细胞的美国科学怪人,从此被称为“挑战上

张田勘:人造生命 见仁见智

  美国克雷格·文特尔研究所的研究人员经过两年半时间的研究和实验,近日终于首次成功实施了人造DNA激活细胞的实验。在3月份的一个星期五,科学家们在离开实验室之前将一百多万对人造DNA碱基对注入到山羊支原体细胞中。当星期一回到实验室时,他们发现这些细胞正生长成一个个细胞群。   文特尔研究所的这一结果

细胞共培养与细胞混合培养有什么区别

原代细胞(primary cell) 是指从机体的组织(如人组织、小鼠组织、大鼠组织和兔组织等)经蛋白酶或其它的方法获得单个细胞并在体外进行模拟机体培养的细胞,称为原代细胞。一般认为,培养的原代的第1代细胞和传代到第10代以内的细胞统称为原代细胞培养。在人工条件下使其原代细胞生存、生长、繁殖和传代,

从人类基因组到人造生命:克雷格·文特尔领路生命科学

  4 合成生物学的贡献和困扰  4.1 合成生物学的概念与意义    合成生物学 (Synthetic biology) 是一门建立在系统生物学、生物信息学等学科基础之上,并以基因组技术为核心的现代生物科学。  合成生物学一词最早出现于1911年的The Lancet杂志,但许多学者认为合成生物学