Antpedia LOGO WIKI资讯

原子荧光分析仪的结构和原理

原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余种,但在实际分析中主要有: 共振荧光 处于基态或低能态的原子, 吸收光源中的共振辐射跃迁到高能态, 处于高能态的原子在返回基态或相同低能态的过程中, 发射出与激发光源辐射相同波长的荧光,这种荧光称为共振荧光。 直跃线荧光 当处于基态的价电子受激跃迁至高能态(E2),处于高能态的激发态电子在跃迁到低能态(E1)(但不是基态)所发射出的荧光被称为直跃线。 阶跃线荧光 当价电子从基态跃迁至高能态(E2)后, 由于受激碰撞损失部分能量而降至较低的能态(E1)。从较低能态(E1)回到基态(E0)时所发出的荧光称为阶跃线荧光。 热助阶跃线荧光 基态原子通过吸收光辐射跃迁至高能态(E2), 处于高能态的价电子在热能的作用下进一步激发, 电子跃迁至与能级E2相近的更高能......阅读全文

原子荧光分析仪的结构和原理

  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余种,但在实际分析中主要有:   共振荧光   处于基态或低能态的原子, 吸收光源中的共振辐射跃迁到高能态, 处于高能态的原子在返回基态或相同低能态的过程中, 发射出与

原子荧光分析仪的结构和原理

  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余种,但在实际分析中主要有:   共振荧光   处于基态或低能态的原子, 吸收光源中的共振辐射跃迁到高能态, 处于高能态的原子在返回基态或相同低能态的过程中, 发射出与

原子荧光分析仪的原理和仪器结构

  原子荧光分析仪是指原子荧光光度计,利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。  

紫外臭氧分析仪的原理和结构

紫外臭氧分析仪/臭氧分析仪 型号MHY-27553该仪器是工艺控制、家电、臭氧发生器检验和医疗器械检验的理想工具。符合《HJ 590-2010环境空气臭氧的测定紫外分光光度法》要求。仪器简介:仪器的原理和结构 1、 方法原理 紫外光度法:当空气样品以恒定的流速进入仪器的气路系统,样品空气交替地或直接

奥萨特气体分析仪的结构和原理

奥萨特气体分析仪又称工业气体分析仪。根据选择性化学吸收法按容积测定烟气成分的仪器。它包括一个量管、三个吸收瓶和一个平衡瓶。测定时从烟道中抽取100mL干烟气试样,依次进入三个吸收瓶,先分析CO2和SO2 (三原子气体),再分析O2,最后分析CO。所用吸收剂分别为苛性钾溶液、没食子酸的碱溶液和氯化亚铜

热重分析仪原理和结构是怎样的?

   热重分析仪作为一种典型的分析仪器,目前已经得到了广泛应用,下面我们就热重分析仪的工作原理加以说明。    热重分析仪主要由热天平、炉体加热系统、程序控温系统、气氛控制系统、称重变换、放大、模/数转换、数据实时采集和记录等几部分组成,通过计算机和相关软件进行数据处理后打印出测试曲线和分析数据结

自动生化分析仪基本结构和原理

一、基本结构(一)按照反应装置的结构,自动生化分析仪主要分为流动式(Flow system)、分立式(Discrete system)两大类。1.流动式 指测定项目相同的各待测样品与试剂混合后的化学反应在同一管道流动的过程中完成。这是第一代自动生化分析仪。2.分立式 指各待测样品与试剂混合后的化学反

逻辑分析仪的原理结构

  逻辑分析仪主要包括数据捕获和数据显示两大部分。逻辑分析仪一般采用先进行数据采集并存储,然后进行数据分析显示方式。   数据捕获部分包括信号输入、比较采样、触发控制、数据存储和时钟电路等。外部被测信号通过探头送到信号输入电路,在比较器中与设定的门限电压进行比较,大于门限电压值的信号为高电平,反之

自动生化分析仪基本结构和原理(3)

二、仪器一般工作流程生化分析仪的正确应用,只是掌握了测定技术原理还不够,还需要对具体仪器的工作流程及测定计算方法有足够的了解。    (一)一般工作流程 本文来自检验地带网工作流程可以通过仪器的测定周期来考察。重点关注比色杯空白读数点(CB)、加样品点(S)、各试剂加液点(R1、R2、……)、试剂空

自动生化分析仪基本结构和原理(2)

4.反应系统(1)反应盘装载一系列反应比色杯(Cuvettes),多为转盘形式。反应测定过程中按固定程序,在加样臂、加液臂、搅拌棒、光路和清洗装置之间转动。有的仪器在反应杯中完成反应后再吸入比色杯比色,现在更常见反应和检测同在比色杯中进行,效率更高,尤其适于连续监测法。比色杯多采用硬质石英玻璃、硬质