Antpedia LOGO WIKI资讯

超临界二氧化碳流体萃取分离的应用

超临界二氧化碳流体萃取可用于制药、食品、化工和生物等产品的分离提纯,常与离心机分离技术结合使用。1、在制药行业的应用:采用超临界二氧化碳流体萃取用于中草药有效成份的提取、热敏性生物制品药物的精制和脂类混合物的分离,可防止中药有效组分的氧化和逸散,无残留的有机溶剂,可获得高质量的提取物,提高药用资源的利用率,大大简化提取分离步骤,能提取分离到一些用传统溶剂法得不到的成分。(1)采用超临界二氧化碳法提取红豆杉中紫杉烷类成分,所得粗浸膏含杂质少,较易得到单体。(2)螺旋藻含丰富的蛋白质和多种生物活性成分,超临界二氧化碳萃取分离技术可将螺旋藻中所含的具有生物活性和热不稳定性的物质提取出来并保持其天然活性,可提高螺旋藻产品的附加值。(3)丹参酮类是从唇形科植物丹参中提取的总酮类及其它成分的总称,是制备各种丹参制剂的主要成分。采用超临界二氧化碳法提取丹参酮类,收率高,生产周期缩短,大大提高有效成分。 (4)采用超临界二氧化碳法提取......阅读全文

超临界流体萃取分离技术及其应用

超临界流体具有独特的物理性质,是一种环境友好的绿色溶剂;超临界萃取技术是一种新型、清洁、高效的绿色分离方法、绿色工艺.文章从超临界流体的基本特性、临界流体萃取技术的基本原理与特点、超临界流体的主要类型、超临界流体该技术在中医药、天然产物中的应用等方面进行了概述了,并对超临界萃取技术的应用前景进行了展

超临界流体萃取分离技术及其应用

超临界流体具有独特的物理性质,是一种环境友好的绿色溶剂;超临界萃取技术是一种新型、清洁、高效的绿色分离方法、绿色工艺.文章从超临界流体的基本特性、临界流体萃取技术的基本原理与特点、超临界流体的主要类型、超临界流体该技术在中医药、天然产物中的应用等方面进行了概述了,并对超临界萃取技术的应用前景进行了展

超临界二氧化碳流体萃取分离的应用

超临界二氧化碳流体萃取可用于制药、食品、化工和生物等产品的分离提纯,常与离心机分离技术结合使用。1、在制药行业的应用:采用超临界二氧化碳流体萃取用于中草药有效成份的提取、热敏性生物制品药物的精制和脂类混合物的分离,可防止中药有效组分的氧化和逸散,无残留的有机溶剂,可获得高质量的提取物,提高药用资源的

超临界二氧化碳流体萃取分离的应用

      超临界二氧化碳流体萃取可用于制药、食品、化工和生物等产品的分离提纯,常与离心机分离技术结合使用。1、在制药行业的应用:        采用超临界二氧化碳流体萃取用于中草药有效成份的提取、热敏性生物制品药物的精制和脂类混合物的分离,可防止中药有效组分的氧化和逸散,无残留的有机溶剂,可获得高

超临界二氧化碳流体萃取分离的特点

超临界二氧化碳流体萃取分离的特点:1、超临界二氧化碳流体萃取分离在接近室温和二氧化碳笼罩下进行的,防止了热敏性物质的氧化和逸散,因此,被萃取物保持着药用植物的有效成分,能把高沸点、低挥发性和易热解的物质远低于其沸点萃取出来。2、超临界二氧化碳流体萃取分离不使用有机溶剂,被萃取物无残留的溶剂物质,保证

超临界二氧化碳流体萃取分离的特点

超临界二氧化碳流体萃取分离的特点:1、超临界二氧化碳流体萃取分离在接近室温和二氧化碳笼罩下进行的,防止了热敏性物质的氧化和逸散,因此,被萃取物保持着药用植物的有效成分,能把高沸点、低挥发性和易热解的物质远低于其沸点萃取出来。2、超临界二氧化碳流体萃取分离不使用有机溶剂,被萃取物无残留的溶剂物质,保证

超临界流体萃取技术的应用

超临界流体萃取技术是七十年代末才兴起的一种新型生物分离精制技术.近年来发展迅速,特别是1978年在西德埃森举行全世界第一次“超临界气体萃取”的专题讨论会以来,被广泛应用于化学、石油、食品、医药、保健品等领域,受到世界各国的普遍重视,在我国已被列为九五期间国家重点开发的高科技项目。下面就超临界

超临界流体萃取分离法简介

超临界流体萃取(SFE),也称气体萃取(gas extraction)、稠密气体萃取(dense gas extraction)或蒸馏萃取(distillation)。由于萃取中的一个重要因素是压力,有效的溶剂萃取过程也可以在非临界状态下实现,因此广义上也称为压力流体萃取(pressure

关于超临界流体萃取技术超临界流体萃取的特点

  1)超临界流体 CO2萃取与化学法萃取相比有以下突出的优点:  (1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着 药用植物的全部成分,而且能把高沸点,低 挥发度、易 热解的物质在其沸点温度以下萃取出来;  (2)使用SFE

超临界二氧化碳流体萃取分离的技术原理

超临界二氧化碳流体萃取分离是利用压强和温度对超临界二氧化碳流体溶解度的影响而进行的分离技术。在超临界状态下,将超临界二氧化碳流体与待分离的物质接触,有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。对应各压强范围所得到的萃取物可能不是单一的,但可以控制条件得到最佳比例的组分,然后用减压、