Antpedia LOGO WIKI资讯

ICP光谱仪的分析过程

ICP光谱仪的分析过程主要分三步,即激发、分光和检测。 其一,激发光源使试样蒸发汽化,离解或分解为原子状态,原子也可能进一步电离成离子状态。原子及离子在光源中激发发光; 其二,利用分光器把光源发射的光色散为按波长排列的光谱; 其三,利用光电器件检测光谱,按所测得的光谱波长对试样进行定性分析,或按发射光强度进行定量分析。......阅读全文

ICP光谱仪的分析过程

  ICP光谱仪的分析过程主要分三步,即激发、分光和检测。  其一,激发光源使试样蒸发汽化,离解或分解为原子状态,原子也可能进一步电离成离子状态。原子及离子在光源中激发发光;  其二,利用分光器把光源发射的光色散为按波长排列的光谱;  其三,利用光电器件检测光谱,按所测得的光谱波长对试样进行定性分析

ICP原子发射光谱仪原子化的过程

  ICP原子发射光谱仪原子化的过程   原子吸收光谱法采用的原子化方法主要有火焰法、石墨炉法和氢化物发生法。   火焰原子化   在这过程中,大致分为两个主要阶段:   (1)从溶液雾化至蒸发为分子蒸气的过程。主要依赖于雾化器的性能、雾滴大小、溶液性质、火焰温度和溶液的浓

ICP光谱仪分析常见干扰

1、电离干扰的消除和抑制:原子在火焰或等离子体的蒸气相中电离而产生的干扰。它使火焰中分析元素的中性原子数减少,因而降低分析信号。在标准和分析试样中加入过量的易电离元素,使火焰或等离子体中的自由电子浓度稳定在相当高的水平上,从而抑制或消除分析元素的电离。此外,由于温度愈高,电离度愈大,因此,降低温度也

ICP光谱仪的分析能特点(一)

等离子体在总体上是一种呈中性的气体,由离子、电子、中心原子和分子所组成,其正负电荷密度几乎相等。通常,它是由高频发生器、等离子炬管和雾化器等三部分组成。高频发生器的作用是产生高频震荡磁场,供给等离子体能量。等离子炬管是由一个三层同心石英玻璃管(也有其他材料做成的)组成。外层管内通入冷却气Ar,以避免

ICP光谱仪的分析能特点(二)

5)大多数元素都有良好的检出限。ICP炬的高温和环状结构,使分析物在一个直径约1-3mm的中间通道内充分地预热去溶,挥发,原子化,电离和激发;致使元素周期表内绝大多数元素在水溶液中的检出限达0.1-00ng/ml,若用质量表示约为0.01-10μg/g,与经典光谱法相近。但对于难熔元素和非金属元素

ICP光谱仪结构特点与工作过程介绍

    一、什么是ICP光谱仪?   ICP发射光谱仪即电感耦合等离子体光谱仪,ICP发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。由于具有高灵敏度与高精密度与多元素共同分析等优点,ICP发射光谱仪在各分析领域得到了广泛应用,成为材料化工及科研领域的通用无

ICP光谱仪分析中试样引入系统的介绍

ICP光谱仪雾化装置通常由雾化器和雾室及相应的供气管路组成,构成了样品引入系统,对雾化性能有重要影响。溶液试样经雾化器(nebulizer)雾化后,进入雾室(spray chamber)。在雾室中,大的雾滴被“滤’’掉成为废液排出,只有那些直径约为10μm以下的细微雾滴才被载气带入原子光谱的

ICP光谱仪分析中的光谱干扰机理

光谱干扰在ICP发射光谱仪分析中占有最重要的地位,在一般的光谱仪工作的波长范围内约有数十万条光谱线,经常会出现不同程度的谱线重叠干扰。此外,ICP光谱仪光源还发射连续光谱背景以及某些分子光谱带,建立分析方法时在选择分析线和校正光谱干扰往往要花费很多工作量。为了获得准确可靠的数据,必须重视ICP光谱仪

ICP光谱仪分析中常见的几个小问题

1、影响等离子体温度的因素有: ①载气流量:流量增大,中心部位温度下降;②载气的压力:激发温度随载气压力的降低而增加;③频率和输入功率:激发温度随功率增大而增高,近似线性关系,在其他条件相同时,增加频率,放电温度降低。④第三元素的影响:引入低电离电位的释放剂的等离子体,电子温度将增加。 等离子体的温

ICP光谱仪分析中的物理干扰及消除

等离子体光谱法(ICP-OES)近年在实验室应用越来越广泛,对等离子体分析法的研究也越来越多,对等离子体光谱法的干扰也越来越多,本文简单介绍一下ICP光谱仪分析中的物干扰。 溶液物理性质不同导致的干扰效应称为物理干扰,又称为物性干扰,主要是由分析样品的溶液黏度、表面张力以及密度差异引起谱线强度的变化