发布时间:2014-04-16 10:05 原文链接: Nature发布单细胞基因组学新技术

  胚胎是如何形成我们肺脏、肌肉、神经和其他组织中的细胞的?一种新的方法可以解码使得胚胎万能细胞能够增殖并转变为机体许多特化细胞类型的遗传指令。

  一开始是一团相同的细胞,随着增殖不断地改变形状和功能,最终变为我们肺脏、肌肉、神经和机体所有其他特化组织中的细胞。胚胎拥有这种创造奇迹的能力。

  现在,在一项逆向组织工程壮举中,斯坦福大学的研究人员开始解开使得胚胎细胞能够增殖及转变为执行不同生物职能的所有特化细胞的复杂遗传密码。

  这一跨学科研究小组选择在小鼠发育周期的不同时间点,获得了来自小鼠胚胎的肺细胞。利用新型单细胞基因组分析新技术,他们记录了在每一个时间点活化的基因。尽管他们研究的是肺细胞,他们的技术适用于所有的细胞类型。

  该研究小组的负责人、斯坦福大学工程学院Stephen Quake教授说:“这为如何做好逆向组织工程设计出了一个蓝本。”

  在发布于《自然》(Nature)杂志上的研究论文中,他与共同作者、斯坦福大学医学院生物化学教授Mark Krasnow、以及肺与危重症医学助理教授Tushar Desai一起详细描述了这些实验。

  他们利用这种逆向工程方法研究了肺泡细胞。肺泡是血管接收氧气以及带走二氧化碳的一个“转接站”。

  Quake实验室博士后学者Barbara Treutlein,与Krasnow实验室博士后研究人员Doug Brownfield一起,从三个妊娠阶段:14.5天、16.5天和18.5天(小鼠平均出生于第20天)的小鼠胚胎处取得198个肺细胞。他们也从成年小鼠处取得了一些肺细胞。

  利用标准酶技术,他们溶解了让肺细胞结合在一起形成组织的蛋白质,随后分选出了作为他们研究焦点的特异肺泡细胞类型。他们接下来的步骤涉及了作为他们逆向工程过程核心的一些新技术。

  回想一下点眼药器是如何起作用的。挤压橡胶球排出空气;将它置于溶液中使其装满溶液;再次挤压橡胶球挤出液体。近年来,生物级数学家们利用这些基本原理开发出了微流体装置,它们能够精确地从溶液中吸取单个细胞,将其分离到腔室中研究它的遗传物质。

  Quake实验室曾率先使用微流体芯片来研究单细胞。在这项研究中,他们利用微流体装置捕获了198个样本肺细胞。随后他们利用单细胞基因组测序检测了每个时间点每个细胞中的活化基因。

  他们是如何破译单细胞中的基因组活性的呢?每个细胞核中的DNA都包含生物体的整个基因组。这就是为什么单个细胞可能构建出一个生物体的原因。但是在特定的时间点特定的细胞中只有一部分的基因处于活性状态。这也是肺细胞为什么不同于毛发细胞的原因;每个细胞都用一组不同的活化基因来操控它的功能。

  基因通过生成mRNA来操控细胞活动。每个mRNA向细胞下达指令生成一种特殊蛋白。细胞实质上就是一组相互作用的蛋白质。因此知道活化的mRNAs为了解细胞在微流体设备中被捕获时的功能提供了一个透镜。

  利用这一过程,斯坦福大学的研究人员首次精确地揭示出了这些特殊的肺细胞向着成熟肺泡发育每一阶段的调控基因。

  研究人员获得了有关肺泡尖端两种重要细胞类型发育的重要研究发现。I型肺泡细胞是人体最扁平的细胞。位于I型肺泡细胞旁边的血细胞负责传送氧气或获取二氧化碳。这些细胞的厚薄对于推动这种气体交换至关重要。

  II型肺泡细胞较小,呈立方形。它们分泌一些蛋白质阻止肺泡萎缩,从而维持氧气和二氧化碳通过的内部空间。

  利用单细胞基因组学,研究人员可以逆向操控发育过程,揭示出了单个的前体细胞类型是如何生成这两种不同的成熟肺泡细胞的。

  研究人员还捕获到了从前体细胞向成熟细胞状态过渡的细胞,获得了一些有关肺泡细胞分化机制的重要认识。

  尽管该研究将焦点放在肺细胞上,这一在胚胎发育不同阶段捕获单细胞,通过mRNA测序测定基因活性的技术适用于逆向操控其他的组织。

  除研究胚胎发育,这一技术还可用于临床环境中。例如,研究人员可以研究肿瘤单个细胞之间的差异,增进我们对于癌症各个阶段的了解,促成更好的、更具靶向性的治疗方法。

  Desai说:“这一技术是我们认识特定细胞群,包括具有特异功能的少见细胞群中整体细胞类型多样性能力的一个量子飞跃。获得每个细胞类型的全面分子特征,包括它们发送和接受的信号,将能够显现出单个细胞之间的通讯快照,有可能为疾病提供一些有吸引力的治疗靶点。”

相关文章

方显杨研究组与合作者共同开发了一种新型活细胞DNA成像技术

三维基因组互作与表观遗传修饰是基因表达调控的重要因素,其动态变化与细胞生长发育及癌症等疾病的发生发展密切相关。解析染色质在活细胞内的时空动态,是理解基因调控机制的重要科学问题。现有基于CRISPR-C......

胚胎“体检”狙击遗传肿瘤10年诞生百名“无癌宝宝”

11月1日,在长沙举行的第五届湖南省抗癌协会家族遗传性肿瘤专业委员会学术年会上,中信湘雅生殖与遗传专科医院(下称中信湘雅)首席科学家卢光琇宣布,该院第100位通过胚胎植入前遗传学检测(PGT)技术阻断......

我国科研人员找到导致反复“试管”失败的“基因钥匙”

10月16日,记者从中信湘雅生殖与遗传专科医院获悉,该院研究员林戈、副研究员郑伟团队,联合山东大学、上海交通大学医学院等单位的科研团队开展合作攻关,系统揭示了卵子与早期胚胎质量问题导致女性反复“试管”......

衰老如何改变我们的基因

衰老对身体产生的可见影响有时与基因活动的无形变化有关。DNA甲基化的表观遗传过程会随着年龄增长而变得不再精确,造成基因表达的变化。而这种变化与随着年龄增长而出现的器官功能衰退和疾病易感性增加有关。如今......

为何有人衰老更快?揭秘背后的400个基因

有些人比同龄人更显年轻,而有些人看着更显老;有些人年逾九旬仍身心康健,而另一些人早在数十年前就饱受糖尿病、阿尔茨海默病或行动障碍的困扰;有些人能轻松应对严重摔伤或流感侵袭,而有些人一旦住院就再难康复。......

科学家发现玉米耐热关键基因

近日,西北农林科技大学玉米生物学与遗传育种团队联合华中农业大学玉米团队在《植物生理学研究》发表论文。研究初步揭示了ZmGBF1-ZmATG8c模块通过自噬途径调控玉米耐热性的分子机制。随着全球气温持续......

降本提效!我团队研制出系列牛用基因芯片

记者21日从国家乳业技术创新中心获悉,该中心技术研发团队成功研制出奶牛种用胚胎基因组遗传评估芯片和“高产、抗病、长生产期”功能强化基因组预测芯片。该系列基因芯片具有完全自主知识产权,填补了我国基因芯片......

新研究:阻断或抑制一种特殊基因可选择性杀伤癌细胞

国际期刊《内分泌学前沿》日前刊登的一项新研究揭示,一种特殊基因对肠道吸收维生素D及其后续代谢过程至关重要,阻断或抑制该基因能够选择性抑制癌细胞生长。这一发现在癌症治疗等精准医学领域具有广阔应用前景。维......

我国科学家发现大豆种子油蛋比调控关键基因

记者从安徽农业大学获悉,该校王晓波教授团队联合中国农业科学院作物科学研究所邱丽娟、李英慧研究员团队,解析了关键基因对大豆种子油脂和蛋白比例(油蛋比)的调控机制,为高油或高蛋白大豆品种选育提供了新方向。......

茶叶大小谁定?这个基因很关键

茶树是以收获新梢为主的叶用经济作物,茶芽大小不仅直接影响鲜叶的产量和品质,还与茶类适制性密切相关。解析茶树芽大小的遗传调控机制,有助于改良茶树品种、提高茶叶产量。近日,中国农业科学院茶叶研究所种质资源......