发布时间:2019-04-29 18:27 原文链接: ProtocolforCellFusion

  1. Healthy Sp2/0 cells should be rapidly growing by this time. Sp 2/0 cells should be started about two weeks before the cell fusion. Every two days, they should be centrifuged at a 64.4 xg on the IEC clinical centrifuge (in 50 ml tubes) for two minutes. The media should be removed and the cells resuspended in fresh media. This ensures that only the healthiest cells will fall to the bottom of the tube. Centrifugation at higher speeds or for longer time periods should be avoided at this step, because that causes weak or old Sp2/0 cells to precipitate also, and is contra-indicative of what you want to accomplish.

  2. Begin the cell fusion by centrifuging two 50 ml or eight 10 ml flasks of Sp2/0 cells that have been transferred to fresh media one to two days previously, at a setting of not more than 3 for not more than 3 min in an IEC clinical centrifuge. Decant the media. You need a ratio of 1:5 healthy, rapidly growing Sp2/0 to spleen cells. This number of flasks will provide about the correct number.

  3. Remove two spleens from the mice selected above, and place them in washing media. Tease apart the spleens. Don't be afraid to take two pair of tweezers, or tweezers and syringe tip and shred the spleens. Then remove cells by perfusing media through the spleens and also by disrupting portions of the spleen with the tweezers. Then remove the remaining large chunks of spleens with tweezers, and place the cells in a 50 ml tube. Centrifuge at a setting of 3 in IEC clinical centrifuge for 3 minutes.

  4. Using warm (37oC) washing media, transfer all the cells to one 50 ml tube, bring the final volume to about 25 to 30 mls, mix by vortexing (THIS IS THE LAST TIME YOU WILL VORTEX ANYTHING in this procedure ) , and centrifuge at a setting of 5 for 3 minutes. The objective here is to pack the cells tightly so that their cell membranes are touching. You also need a large surface area, and to prevent layering of the large Sp2/0 cells on the bottom and spleen cells on top. The best tubes to use are the widest, flattest bottomed ones (our 50 ml conical tubes work fine). The worst tubes are the narrow, very conical bottomed tubes (our 15 ml culture tubes). If it is necessary to use 15 ml tubes, use round bottom ones only! 

  5. Add one ml of warm (37o) 50 % PEG (m. wt. 1500) (source and type) over one minute, gently swirling the tube at 37oC. If you add the PEG with a 1 ml pipette and gently stir the cells, you will probably obtain many more hybridomas. After the PEG is added, cap the tube, gently swirl a couple more times, then centrifuge at a setting of 5 for 3 minutes (minimum). This is the critical step. Cells must be compacted and stuck together for cell fusion to occur. This step will also ensure that the PEG comes to the surface while the cells are compacted at the bottom of the tube. Then remove as much PEG as possible with a pipette. (CAUTION: PEG is toxic to cells, and should be removed promptly. This is not the step to "take a break.")

  6. Add 8 to 10 mls of warm (37oC) washing media over a period of 2.5 to 3 minutes, again gently swirling the tube. Do not disturb the cell pellet. Add the media as gentle drops. Remember that the cells are very fragile. After addition of the media, cap the tube, gently swirl it another time or two, then centrifuge at a setting of 5 for 3 minutes. Remove the media. This step can be repeated once more, to ensure that all the PEG is removed, but this appears to be an optional step.

  7. Finally, using a large tipped pipette, such as a 5 ml disposable pipette, and warm complete media (containing HT media, for the very best results) transfer the cell pellet to a 50 ml flask. Do not disrupt the cell pellet or use a syringe!. Hybridomas will grow out of the clumps of stuck-together cells. Allow the cells to grow in a 50 ml flask in the presence of CO2, HT media, and the unfused cells, for 4 to 24 hours. It seems that the cells are too fragile to handle immediately after fusion, but large numbers of hybridomas have been obtained when cells were plated on the same day as the cell fusion. Cold Spring Harbor (1989) does not include the overnight incubation prior to plating.

  8. Add HAT media to the 50 ml of media in the flask (50x HAT is used at a ratio of 1 ml/100 ml of media; 500x HAT is used at a ratio of .1 ml/100 ml of media). Plate the 50 mls into the center 60 wells of 5 96 well plates WITH A WIDE TIPPED PIPETTE (300 wells) - DO NOT use a syringe and needle! Cells should cover the bottoms of the wells. This is important to maintain the CO2 level at a high enough level, and possibly the hybridomas obtain growth hormones from the unfused spleen cells. The complete media supplemented with fetal bovine serum should support the growth of 50 cells/well, but ours does not appear to do this. The first thing one would consider, is that the fetal bovine serum content is too low, but our media supports the growth of Sp2/0 and established hybridoma cells very well. The problem here appears to be the CO2 content. Therefore, high cell density maintains the CO2 at a higher level, and more hybridomas survive.

  9. After 4 to 5 days, add complete media supplemented with HT to the wells.

  10. After 1 week, test the wells with hybridomas against the antigen by an ELISA.

  11. Expand positive hybridomas into 24 well plates. You MUST use spleen feeder cells and HT media. If many wells are positive, hybridomas may be combined into expansion wells. CELLS MUST BE RE-EXPANDED EVERY TWO TO THREE DAYS. Biochemistry book recommends that hybridomas be cloned immediately, in order to prevent overgrowth of the desired cells, by non-secreting cells that may be present.

Summary:
The mouse is immunized six times. After the spleen is removed, the splenocytes are obtained and fused with myeloma cells using PEG. The hybrids are plated into 96 well tissue culture plates and observed for colony growth.


相关文章

实名举报后饶毅在CellRes(IF>20)质疑中科院耿美玉团队

当今中国学术界,最敢说的人是谁?看了今天的内容,你可能会对饶毅教授的“扛”有一个新的认识......去年11月份,广为人知的学术地震是饶毅教授实名举报了3位重量级人物:武汉大学李红良教授、上海生命科学......

郭天南:全景式组学研究为新冠重症早诊断提供决策依据

分析测试百科网讯在新冠肺炎COVID-19疫情肆虐全球之际,PCR技术在快速筛查中已大显神威,但进入临床后如何更早地区分轻症和重症患者,从而更准确地治疗和用药?5月27日中国研究人员在《Cell》发表......

Cell及子刊发文557篇!2019哪些内地机构和省份表现优秀?

▲2019年,以中国内地机构为第一完成单位的中国科学家在CellPress旗下20种研究类期刊上发表的论文共557篇,而在2014年仅为107篇。▲中科院所属研究机构和重点高校发表的论文占很大比例,两......

高福等团队Cell发文:新冠疫苗已启动II期临床试验!

自新冠疫情爆发以来,已对全球造成了巨大的健康威胁。但是,目前为止尚未找到有效的治疗方法,因此,全球无数科学家都在努力测试相关药物和研发相关疫苗。2020年5月7日,刘磊、高福和高峰等研究团队曾在预印本......

29篇新冠领域研究、共108篇已发表的CNS名单都在这里了

截止2020月5月23日,中国学者在Cell、Nature及Science发表了共计108项研究成果,在生命科学、材料学、物理学、化学等领域取得重大进展,iNature系统总结了这些研究成果:按杂志来......

CellRep:揭秘肿瘤抑制子p53诱发癌细胞死亡的分子机制

癌细胞和p53之间一直存在一种持续的战斗,p53被称为“基因组的守护者”,近日,一项刊登在国际杂志CellReports上的研究报告中,来自意大利特伦托大学等机构的科学家们通过研究鉴别出了影响其之间斗......

AgingCell:如何延缓衰老

健康老龄化已经成为欧洲研究的重点之一。塔尔图大学的研究人员寻找了年轻人和老年人免疫系统的差异。他们把重点放在单核细胞上,发现老年人的单核细胞似乎不能产生那么多的能量,而且与年轻人相比,炎症标志物也增加......

Cell:我国科学家揭示SARSCoV2利用人ACE2进入细胞机制

-新出现和重新出现的病毒是对全球公共卫生的重大威胁。自2019年底以来,中国政府已在中国武汉市报告了一系列人类肺炎病例,这种疾病被命名为2019年冠状病毒病(COVID-19)。这些病例表现出诸如发烧......

Cell学术顾问委员会最新名单:这7位中国学者受邀加入

近日,《中国科学报》注意到,细胞出版社(CellPress)官方网站更新了《细胞》(Cell)杂志学术顾问委员会名单。高福、周琪、王宏伟、黄三文、高彩霞、陈玲玲、张泽民等7位中国科学家入选。加上201......

Cell子刊揭示:甜味剂+碳水化合物更伤身!

随着低热量甜味剂在食品、饮料、药物等方面的广泛应用,关于它在健康方面影响的争议也越来越大。一些科学家认为,长期食用甜味剂将对大脑及新陈代谢产生负面影响。当地时间3月3日,《CellMetabolism......