发布时间:2020-04-21 21:41 原文链接: “RNA甲基化”研究汇总——拟南芥篇

关于RNA甲基化修饰的研究成果在Nature,Science,Cell等高分期刊上频频亮相,并一次次刷新人们对生命科学的认知。拟南芥作为植物界中研究RNA甲基化修饰的先行者,许多学者将它作为研究对象,并与最新m6A、m5C RNA甲基化测序技术结合,证实到RNA甲基化广泛存在于拟南芥各个发育期,并揭示了RNA甲基化相关酶在特殊发育时期,如开花,叶片形成,种子发育,根部生长等过程中发挥重要作用。

小编全面整理了拟南芥RNA甲基化最新的研究成果,现从以下三方面进行阐述:


  • m6A RNA甲基化谱研究 


  • m6A RNA甲基化酶分子机制研究 


  • m5C RNA甲基化谱及甲基化酶分子机制研究 

一、拟南芥m6A RNA甲基化谱研究汇总

1. Genome Biology:拟南芥花叶根组织m6A RNA甲基化谱     

影响因子:13.21

西北农林科技大学联合中科院和普渡大学,借助m6A RNA甲基化测序技术,对比拟南芥花,叶,根组织中(每种组织有两个生物学重复)m6ARNA甲基化情况。结果发现检测组织中m6A RNA甲基化修饰程度比人类高10%左右,占转录组的83%。

2. Nature Communications:不同品种拟南芥m6A RNA甲基化谱

影响因子:12.35

芝加哥大学联合北大,利用m6A RNA甲基化测序技术,对比Can-0和Hen-16品种拟南芥根组织中m6A RNA甲基化谱,发现m6A的分布在两个品种间高度保守。与人类m6A RNA甲基化位点分布情况相比,拟南芥m6A RNA甲基化位点在起始翻译区特异性高表达。

二、拟南芥m6A RNA甲基化酶研究汇总

m6A RNA甲基化修饰酶,主要包括Writer,Eraser和Reader,如METTL3/14/16,WTAP;ALKBH5等。那么,在植物中,RNA甲基化酶都研究到什么程度了?小编都给您整理好了,见下表。

拟南芥m6A RNA甲基化酶类型总结(截止到2018年6月)


类别

基因

Writer

MTA,MTB (分别与METTL3,METTL314同源)

FIP37 (与WTAP同源)

Virilizer(与KIAA1249同源)

Hakai

Eraser

ALKBH10B

Reader

ECT2

1.Developmental Cell:拟南芥m6A修饰调控芽尖细胞增殖

影响因子:11.91

由于拟南芥FIP37与人类甲基化转移酶WTAP高度同源,因此作者想看看FIP37的功能是否与人类的WTAP一样。带着这个问题,作者运用T-DNA突变法构建了FIP37的野生型和突变型,敲除后发现对茎尖分生组织增殖影响显著。又将正常,敲除或过表达FIP37拟南芥为样本,分别进行m6A RNA甲基化测序,结果发现敲除组m6A修饰水平显著低于正常和过表达组。通过RIP测序,证实FIP37能够直接与WUS和STM基因结合,进行m6A RNA甲基化修饰。

2.The Plant Cell:TLC法检测拟南芥m6A RNA甲基化修饰

影响因子:8.23

前篇文章的作者之所以挑FIP37来做机制研究,主要是缘于这篇文章的铺垫。在m6A RNA甲基化测序技术未成熟时期,先通过70年代就有应用的TLC法,检测到拟南芥花,叶,根组织中广泛存在m6A RNA甲基化修饰,在开花时期其甲基化修饰程度更高。作者接着应用酵母双杂交技术,证实了FIP37通过与MTA结合,形成甲基转移酶复合物。

3.New Phytologist:拟南芥中存在多种m6A RNA甲基化转移酶

影响因子:7.43

马萨里克大学研究团队证实甲基化转移酶MTB和FIP37调控了m6A RNA甲基化修饰。分别敲降甲基化转移酶后,检测发现拟南芥根组织的增殖情况发生异常。另外,作者还检测到拟南芥的甲基化转移酶,Virilizer和Hakai。如果想研究植物RNA甲基化酶,“墙裂”推荐这篇作为敲门砖!

4.The Plant Cell:m6A RNA Eraser----ALKBH10调控拟南芥开花

影响因子:8.23

北大研究团队对拟南芥中去甲基化转移酶进行了研究,发现ALKBH10B在拟南芥开花期间高表达。敲降后,干扰组开花用时比对照组长。作者又通过m6A RNA甲基化测序,检测了敲降ALKBH10B样本后发现1000多个基因发生了差异的甲基化修饰。此文还找到几个与ALKBH10B直接作用的靶基因和miRNA,感兴趣的老师可以详细看看。

接下来,小编将通过3篇文章介绍拟南芥与其m6A RNA甲基化Reader ECT2。有趣的是,这3篇文章发表在同一期刊:The Plant Cell;更有意思的是,它们见刊时间相差不到一个月。

5.The Plant Cell:拟南芥m6A修饰调控ECT2的YTH结构,影响毛状分枝形态

影响因子:8.23

这篇文章的思路值得借鉴,作者首先以一般YTH结构域多在Reader上分布为依据,通过序列比对,发现拟南芥ECT2蛋白上存在许多YTH结构域,推测其能够识别m6A 结合位点。这个思路,不知云粉们是否觉得眼熟?之前,在m6A RNA甲基化---非编码RNA篇中就曾介绍过,发表在Nature上,作者在pri-miRNA上发现许多METTL3的motif,经过验证后发现这些motif的确与m6A RNA的甲基化转移酶有关。

6.The Plant Cell:拟南芥ECT2的甲基化调控mRNA的稳定性并影响毛状分枝形态

影响因子:8.23

本篇文章重在筛选能与ECT2蛋白结合的靶基因,找到了3个,分别为TTG1、ITB1、DIS2。首先,作者根据自己的实验需求,开发了一套FA-CLIP(甲醛交联-免疫共沉淀)流程,成功找到发生甲基化RNA与ECT2结合位点,并确定结合区域为3'UTR。作者又应用凝胶迁移(EMSA)技术,证明3’UTR上的UGUA序列为植物特有,且可被ECT2特异性的识别。

7.The Plant Cell:YTH结构域调控m6A RNA甲基化修饰,影响叶片发育和形态

影响因子:8.23

哥本哈根大学研究团队对比研究了ECT2-4的结构,发现ECT2,3能通过与m6A结合位点结合,调控叶片生长,毛状体形态,而ECT4仅在ECT2,3都缺失时,才发挥作用。作者通过进化树和对已有转录组库的筛选,最终确定将ECT2-4作为重点来研究。通过定点突变m6A RNA甲基化位点,构建单敲/双敲/三敲的拟南芥模型及回补措施,分别对拟南芥叶片上的毛状分枝数量做统计,最终证实ECT2-4上的m6A RNA甲基化位点均具有调控作用。在拟南芥中,作者首次比对了人类与拟南芥ECT蛋白的结构,发现其N端包含许多无序的蛋白结构,此发现为推测Reader与靶基因结合从而形成聚合体提供理论依据。

三、拟南芥m5C RNA甲基化谱及甲基化酶研究汇总

1. Molecular Plant:拟南芥m5C RNA甲基化谱及TRM4B酶功能

影响因子:9.33

中国农业科学院的谷晓峰课题组将RIP技术与传统转录组测序结合,检测到拟南芥中差异表达基因上平均有1-2个m5C甲基化位点。同时,证明了m5C甲基转移酶TRM4B及其突变体对拟南芥根发育的影响。

2. The Plant Cell:拟南芥m5C RNA甲基化谱及TRM4B酶对根的影响

影响因子:8.23

与上篇不同,本研究团队采用m5C RNA甲基化测序研究拟南芥中m5C甲基化谱,在种子,幼芽,根中发现了1000多个特异性的位点。敲低RNA m5C甲基转移酶TRM4B,造成tRNA稳定性的降低。研究人员还证实TRM4B突变体的初级根比野生型更短,同时对氧化的应激反应更敏感。






相关文章

PNAS|2024年张锋团队迎来首篇重要研究成果

博德研究所张锋团队在PNAS 在线发表题为“HumanparaneoplasticantigenMa2(PNMA2)formsicosahedralcapsidsthatcanbeengin......

新药获批上市,阿尔茨海默病离“治愈”还有多远?

今年1月9日,我国继美国、日本之后,正式批准治疗阿尔茨海默病的新药仑卡奈单抗上市。这款药曾被美国《科学》杂志列为2023年度十大科学突破之一。如何攻克阿尔茨海默病一直是医学界的重要课题。据世界卫生组织......

科学家绘制正常组织DNA甲基化单体图谱

中国科学院分子细胞科学卓越创新中心研究员石建涛,联合上海交通大学医学院附属瑞金医院教授方海,在《基因组研究》(GenomeResearch)上,在线发表了题为ADNAmethylationhaplot......

多功能植物小RNA分析工具|一站式小RNA分析及可视化

日,《科学通报》在线发表了华南农业大学园艺学院教授夏瑞团队最新研究成果,他们研究开发出一款多功能植物小RNA分析工具——sRNAminer,可便于研究人员进行一站式小RNA分析及可视化。据介绍,植物小......

中国科大:揭示跨膜蛋白SIDT1调控人类核酸摄取的分子机制

RNA干扰是指由双链RNA诱导的基因沉默现象,在细胞发育和抗病毒免疫等生物学过程中发挥重要作用,并被用作基因功能研究和疾病治疗的遗传工具。RNA干扰现象可在秀丽隐杆线虫全身及其后代中传播,被称为系统性......

研究发现“无中生有”的新基因起源机制

生物体的复杂性是由它们的基因编码的,但这些基因从何而来?据最新一期《美国国家科学院院刊》报道,芬兰赫尔辛基大学研究人员解决了围绕小分子RNA基因(microRNA)起源的悬而未决的问题,并描述了一种创......

中国科学院生物物理研究所发现古菌C/DRNA识别底物新规则

11月30日,中国科学院生物物理研究所叶克穷课题组在《中国科学:生命科学(英文版)》(ScienceChinaLifeSciences)上,在线发表了题为Complicatedtargetrecogn......

6mA甲基化修饰调控工业微藻油脂合成过程揭示

微藻在全球光合作用、二氧化碳固定及初级生产力中贡献卓著,是颇有前景的合成生物学底盘细胞。为了探索工业固碳产油微藻的表观遗传机制和生理作用,中国科学院青岛生物能源与过程研究所单细胞研究中心以海洋微拟球藻......

新发现!细菌RNA代谢调控新机制

近日,中国科学院水生生物研究所张承才团队关于细菌中RNA代谢调控机制的研究取得了进展。相关研究成果以《蓝藻中RNaseE受一个保守蛋白调控》(Aconservedproteininhibitorbri......

化学学院邹鹏课题组利用光催化邻近标记技术揭示应激颗粒转录组动态变化

应激颗粒是在胁迫条件下形成的动态结构,通常认为其中包含翻译被抑制的RNA以及翻译元件,并可在刺激消失后解聚,是细胞内典型的无膜细胞器。在应激颗粒组装的不同阶段,大量RNA分子会被招募至应激颗粒中,对维......