生物物理所研究发现决定偏好行为的神经基础
近日,Science在线发表了中国科学院生物物理研究所刘力课题组龚哲峰副研究员等人关于发现果蝇幼虫中央脑的两对神经元足以调节果蝇幼虫对于不同光强条件的偏好行为的研究成果。他们发现,增加这两对神经元的活性会促进幼虫的避光行为,而抑制这两对神经元的活性则能够逆转幼虫的避光行为为趋光行为。这项工作是在偏好行为的神经回路研究中第一次将神经元回路延伸到第三级神经元,为揭示果蝇幼虫光偏好行为乃至于其他偏好行为的神经元机制奠定了重要基础。 动物行为是具有相当灵活性的,可以随着环境,营养状况,年龄等因素的变化而大幅度调整变化。但是,外在和内在的条件是如何改变动物的天性的?其神经基础并没有完全被人们所了解。高等动物包括人类,其行为习性和偏好都会随着外在因素如环境以及内在因素如年龄之类的变化而发生剧烈变化。比如,人类的爱和恨,常常会随着内在和外在的因素变化而发生转化。与此类似,无脊椎动物如果蝇的幼虫,随着年龄的变大,那些年幼......阅读全文
《科学》发表我国科学家关于果蝇幼虫光偏好行为成果
人类有爱有恨,有欢喜有厌恶,儿童爱不释手的玩具可能被成人不屑一顾。然而,这种喜好并不是人类的ZL,低等动物同样会有抉择。成语“飞蛾扑火”诠释了昆虫为求光明甚至不惜牺牲,然而,昆虫幼虫恰恰喜欢茫茫黑暗却往往不为人知。 近日,中国科学院生物物理研究所研究员刘力、副研究员龚哲峰等初步揭示了
生物物理所研究发现决定偏好行为的神经基础
近日,Science在线发表了中国科学院生物物理研究所刘力课题组龚哲峰副研究员等人关于发现果蝇幼虫中央脑的两对神经元足以调节果蝇幼虫对于不同光强条件的偏好行为的研究成果。他们发现,增加这两对神经元的活性会促进幼虫的避光行为,而抑制这两对神经元的活性则能够逆转幼虫的避光行为为趋光行为
研究发现光偏好行为神经环路机制
中科院神经科学研究所杜久林研究组发现,通过视网膜神经节细胞和隆凸丘脑组成的非对称性视觉通路,左边背侧缰核介导了斑马鱼的光偏好行为。该研究揭示了缰核介导光偏好行为的新功能,并首次在脊椎动物中发现了光偏好行为的神经环路机制。相关成果2月9日在线发表于《神经元》。 杜久林告诉《中国科学报》记者,光偏
果蝇信息素和性行为
一项研究提示,果蝇信息素的进化很可能让雄性利用了其它雄性的预先存在的感觉偏差。动物表现出了一大批竞争配偶的性状,但是人们尚不清楚这些性特征是如何出现并且进化的。Joanne Yew及其同事研究了一种称为CH503的信息素的进化起源,这种信息素是由雄性果蝇分泌的,在交配时转移给雌性,而后阻止了
-果蝇知道该喝什么“酒”
通常,果蝇的幼虫在含有合适的酒精浓度食物中生长,会更健康,体型更大,并且能够更好地防止寄生虫寄生。作为它们的父母,成年果蝇也知道什么样的酒精浓度最适合后代生存,在产卵的时候为其选择最佳的酒精浓度,以保障后代健康生长。 成年果蝇的这一偏好机制,日前被研究者揭示,研究人员表示,果蝇大脑中有两种
迄今最大果蝇大脑图谱详细揭示神经元
果蝇虽然不是最聪明的生物,但科学家仍然可以从其大脑中学到很多东西。现在,研究人员已绘制出一张全新的成年果蝇(黑腹果蝇)大脑图谱,这也是迄今为止所有生物中最完整的“全脑接线图”。该图谱展示了超过5450万个突触以及近14万个神经元之间的连接,并揭示了新的神经细胞类型。研究人员绘制了拥有近14万个神经元
迄今最大果蝇大脑图谱详细揭示神经元
果蝇虽然不是最聪明的生物,但科学家仍然可以从其大脑中学到很多东西。现在,研究人员已绘制出一张全新的成年果蝇(黑腹果蝇)大脑图谱,这也是迄今为止所有生物中最完整的“全脑接线图”。该图谱展示了超过5450万个突触以及近14万个神经元之间的连接,并揭示了新的神经细胞类型。研究人员绘制了拥有近14万个神经元
从神经元集群行为揭示脑波的行为编码规则
神经科学中一个最大难题就是,大脑是怎样在细胞水平为思维——如认知和记忆编码的。已有证据显示,不同的神经元集群代表了不同的信息,但还没人知道这些集群是什么样子或怎样形成的。据物理学家组织网近日报道,最近,美国麻省理工大学和波士顿大学通过研究猴子行为,揭示了神经元集群怎样形成思维,并为思想的灵活变化
9000果蝇大脑解剖,揭示神经元如何精准连接
原文地址:http://news.sciencenet.cn/htmlnews/2022/6/481723.shtm 大脑就像一个极其精密的通信网络。它们通过神经元之间的连接形成一个特定的环路,感知外部世界,并指挥着人和动物的行动。 科学家已经发现,人脑拥有大约860亿个神经元,每两个神经元
揭示果蝇行为免疫防御真菌感染的互作机制
11月23日,Current Biology期刊在线发表了中国科学院分子植物科学卓越创新中心王成树研究组完成的研究论文,揭示了果蝇通过一个化学感知蛋白识别昆虫病原真菌孢子表面蛋白而触发行为免疫,诱导清除体表孢子而拮抗真菌感染。 除了先天免疫途径抗菌外,蜜蜂、白蚁和蝇类等昆虫可通过梳理行为进行行
研究发现质膜鞘磷脂可调节果蝇昼夜行为
中国科学院遗传与发育生物学研究所税光厚研究组利用果蝇为模型,通过遗传筛选、脂质/代谢组学、蛋白质组学等系统研究,探究并证实了果蝇神经胶质细胞中鞘磷脂含量在调节果蝇生物节律和寿命中的作用,研究成果近日在线发表于在《国家科学评论》。 生物钟控制了代谢、进食-禁食周期以及睡眠-觉醒活动的日常波动
果蝇幼虫大脑部分神经元连接图绘出
据最新一期《自然》杂志报道,美国约翰·霍普金斯大学领导的国际团队日前绘制出果蝇幼虫大脑学习和记忆中心的完整神经元连接图,从而为最终绘出所有动物的大脑神经元连接图迈出了坚实的一步。 该项研究中使用的果蝇幼虫大脑部分,相当于哺乳动物的大脑皮层,其中包括大约1600个神经元,而整个果蝇幼虫大脑大约有
打造“固态神经元”-新型硅芯片再现生物神经元电行为
英国《自然·通讯》杂志3日发表的一项最新突破,英国科学家报告了一种新型硅芯片,可再现生物神经元的电行为。利用他们的方法,科学家有望开发出仿生芯片来修复神经系统中因病而导致功能异常的生物电路。 科学家们花了多年的时间来制造更加酷似生物神经元的芯片模型。但是,试图在现代硅片上模拟天然构造时,依然存
Science:神经元突起中,单核糖体偏好性地翻译突触mRNA
RNA测序和原位杂交揭示了神经元树突和轴突中存在意想不到的大量RNA种类,而且许多研究已经记录了蛋白在这些区室中的局部翻译。在信使RNA(mRNA)的翻译过程中,多个核糖体可以同时占据单个mRNA(一种称为多核糖体的复合物),从而导致编码蛋白的多个拷贝产生。多核糖体通常在电子显微镜图片中被识别为
神经元活动如何产生行为?答案在极个别的神经元中
我们大脑中的神经元活动如何引发行为上改变?从细胞层面到行为学层面存在巨大的鸿沟。这长久以来都是神经科学的难题。近日,来自马克斯普朗克神经生物学研究所的科学家们开发了一种方法,可以让他们识别出那些参与特定运动指令的神经细胞。科学家首次通过人为地激活少数神经元来诱发鱼的行为。了解神经环路的核心成分是
定向激光可借神经元控制线虫行为
据物理学家组织网近日报道,哈佛大学的科学家利用精确定向的激光,能够管控动物大脑内的神经元,将它们的感觉输入转化成行为,指示其朝着科研人员选中的方向转动。此外,科学家甚至还能植入错误的感觉信息,使动物形成错误的感知,并作出相应举动。相关研究报告发表在最近出版的《自然》杂志上。 科研人员称,实
MIT科学家:模拟神经元网络-根据人的偏好与品味推荐餐馆
Nara正是基于神经元的网络结构设计了一套推荐算法,根据人们的偏好与品味去推荐餐馆。现在,北美已经有一百多万家餐馆纳入了Nara的神经元网络。而且,像人的大脑一样,Nara也拥有学习能力,它可以把现实中的信息进行情境化分析。所以不仅餐馆,酒店也可以纳入这个体系。 用户点进Nara的网站,网站先
生物物理所揭示果蝇感知重金属离子的“超级”能力
人类活动带来的重金属污染已成为全球性难题,引发生态与健康危机。20世纪30年代以来,屡次爆发重大重金属污染事件,对人类健康和农产品质量安全带来了挑战。重金属污染具有长期性、累积性、潜伏性和不可逆性等特点,危害大且治理成本高昂。污染物在土壤和水源中富集,并通过进食及饮水等途径进入人体。过量摄入的重
研究发现脑内负责压力应对行为的神经元
勇士与懦夫是否有生物学成因?近日,中国科学技术大学周江宁研究组发现脑内负责压力应对行为的神经元,相关研究成果2月25号在线发表于《神经元》。 我们生活在一个充满压力的自然和社会中,面对压力每一个体都将做出选择:是主动应对还是被动回避。负责这种抉择能力的脑的生物基础是什么?这是一个著名科学问题,
新型硅芯片可再现生物神经元的电行为
英国《自然·通讯》杂志3日发表的一项最新突破,英国科学家报告了一种新型硅芯片,可再现生物神经元的电行为。利用他们的方法,科学家有望开发出仿生芯片来修复神经系统中因病而导致功能异常的生物电路。 科学家们花了多年的时间来制造更加酷似生物神经元的芯片模型。但是,试图在现代硅片上模拟天然构造时,依然存
科学家绘制果蝇全脑神经图谱
神经系统科学的一个主要任务就是了解大脑神经元与特定行为间的联系。在一项新的研究中,研究人员使用计算机视觉和机器学习技术,构建出一个大型的全脑神经图谱数据库。这些全脑神经图谱揭示了激活成年果蝇中的一部分神经元的行为影响。相关论文近日发表于《细胞》杂志(论文链接)。 “该研究的终极目标是将神经元回
科学家绘制果蝇全脑神经图谱
神经系统科学的一个主要任务就是了解大脑神经元与特定行为间的联系。在一项新的研究中,研究人员使用计算机视觉和机器学习技术,构建出一个大型的全脑神经图谱数据库。这些全脑神经图谱揭示了激活成年果蝇中的一部分神经元的行为影响。相关论文近日发表于《细胞》杂志。 “该研究的终极目标是将神经元回路与特定的行
Cell:科学家绘制果蝇全脑神经图谱
神经系统科学的一个主要任务就是了解大脑神经元与特定行为间的联系。在一项新的研究中,研究人员使用计算机视觉和机器学习技术,构建出一个大型的全脑神经图谱数据库。这些全脑神经图谱揭示了激活成年果蝇中的一部分神经元的行为影响。相关论文近日发表于《细胞》杂志。 “该研究的终极目标是将神经元回路与特定的行
研究揭示动物社交欲望的神经机制
10月22日,中国科学院生物物理研究所朱岩课题组在Nature Communications上发表题为Social attraction in Drosophila is regulated by the mushroom body and serotonergic system的研究论文,研究
Cell:首次发现“好斗”神经元
加州理工Caltech的科学家们发现,雄性果蝇比雌性更具攻击性是因为其大脑具有特殊的好斗细胞,而雌性果蝇缺乏这类神经元。文章于一月十六日发表在Cell杂志上。 “我们发现的这种性别特异性细胞,通过释放特定的神经肽(或激素)产生影响。这种物质在包括小鼠和大鼠在内的哺乳动物中,也与攻击性密切相
Science绘制新型神经元参考图谱
报道 神经科学家们获得了一份新的指南,可为他们开展研究工作了解果蝇神经结构的功能提供参考。来自霍华德休斯医学研究所和约翰霍普金斯大学的研究人员,记录了整个果蝇幼虫大脑活化神经元的行为效应并对其进行了分类。研究人员还发现,幼虫大脑的1万个神经元大多数为活化细胞。他们的研究成果在线发表在3月27
科学家揭晓大脑控制方向相关机制
“出门靠导航,方向靠左右”是现在的普遍现象。想象一下,从地铁站走到拥挤的街道上,如果你是一名常客,可能只需一眼就能知道自己的位置。但如果你从未去过这个地铁站,你可能需要时间来定位自己,留意周围的街道标志、商店或打开导航,不久,你才有了方位,并朝正确的方向出发。 近日,有科学家在《Nature》
生物物理所在逆转“失败者效应”机制研究中取得进展
过往社会经历能够影响人的精神状态及动物的脑功能状态,导致在相同场景或面对相同刺激时,个体做出完全相反的行为抉择。典型案例是打斗失败对个体的影响,在打斗过程中,参与打斗的个体总能分出输赢;本来斗志昂扬的个体,一旦被打败,就会落荒而逃,且回避未来的打斗,学界称这种现象为“失败者效应”。但是科学家尚不
Cell:鉴定出调节食物摄入的味觉回路
包括人类在内的所有动物喜欢甜食,特别是在饥饿时。但是如果你在正常情形下从不抗拒甜点的话,那么作为一项科学实验,试着狼吞虎咽6个甜甜圈。吃完后,即便是一块最可口的巧克力蛋糕也将并不那么勾起你的食欲,而且你也很可能吃得更少。 大脑加工很多有助调节我们吃什么和吃多少的信号。我们如何知道哪些口味好而哪
睡眠两小时,精神一整天
昼夜节律和睡眠稳态是共同进化而来的生物现象,前者控制人类何时入睡,后者控制每天要睡多久。在果蝇、小鼠和人类中,都能观察到这两种行为共同作用来控制动物的周期性睡眠。随着近年来对各种模式生物的研究,科研人员对分别调控这两种行为的分子和神经通路了解得很多。但在大多数生物中,对节律神经回路如何输出到睡