新型纳米涂层可防止物体表面结冰
美国哈佛大学的研究人员开发出了一种纳米涂层,在低温下能使滴溅在其表面的水滴未及结冰就滑落。该技术有望实现永不结冰的飞机机翼和输电线路、保温性能更佳的建筑以及在严寒和大雪中也能保持通畅的高速公路,并且与目前在除冰融雪中所采用的化学及加热方法相比,该技术效率更高也更为环保。相关论文发表在《美国化学学会·纳米》杂志网络版上。 负责该项目的哈佛大学工程与应用科学学院的科学家乔安娜·艾森贝格和艾米·史密斯·贝利尔表示,其最初的灵感来自于自然界。 艾森贝格说:“一些动物和昆虫解决问题的方案让我们着迷,例如,蚊子能够防止自己的眼睛起雾,水黾(一种水生半翅目类昆虫,俗称水板凳)能够借助脚上的油质细毛防止水的侵入,从而完美地漂浮在水面。因此,我们希望采取一种与以往完全不同的策略和设计来使材料具有天然的抗结冰能力。” “从过去的研究中,我们意识到冰的形成并非一个静态过程,要解决结冰问题,必须详细了解冰在物体表面......阅读全文
研究人员为燃料电池开发了低成本,更高效的纳米结构
[导读] 加州大学洛杉矶分校的研究人员开发出使用三种金属化合物制成的纳米结构,在降低生产成本的同时,增加了燃料电池的效率和耐久性。他们的方案解决了这项技术一直停滞不前的棘手问题。 中国科技网6月16日报道(张微 编译)加州大学洛杉矶分校亨利·萨姆厄里工程与应用科学学院的研究人员领导一个研
研究人员为燃料电池开发了低成本,更高效的纳米结构
[导读] 加州大学洛杉矶分校的研究人员开发出使用三种金属化合物制成的纳米结构,在降低生产成本的同时,增加了燃料电池的效率和耐久性。他们的方案解决了这项技术一直停滞不前的棘手问题。
研究人员为燃料电池开发了低成本,更高效的纳米结构
加州大学洛杉矶分校亨利·萨姆厄里工程与应用科学学院的研究人员领导一个研究团队,开发出使用三种金属化合物制成的纳米结构,在降低生产成本的同时,增加了燃料电池的效率和耐久性。他们的方案解决了这项技术一直停滞不前的棘手问题。 加州大学洛杉矶分校材料科学与工程专业副教授,这项研究的首席研究员Yu Hu
美国研究人员利用纳米技术新方法捕获人类运动能量
通过手指滑动为手机充电和通过走路为蓝牙耳机充电为期不远。美国密歇根州立大学工程研究人员创造了一种新方法,利用可折叠薄膜状装置来捕获人类运动产生的能量。科学家们利用低成本的纳米发电机,在无电池供电情况下,仅通过简单触摸或按压,成功操作了一个LCD触摸屏、20个一组的LED灯和一个键盘。 该方法
澳大利亚一大学开发超疏水防雾纳米结构
澳大利亚卧龙岗大学超导和电子材料研究所的研究人员,基于常见绿蝇眼睛的表面结构,使用锌纳米粒子成功地创建出在显微镜下可观察的超疏水防雾纳米结构材料,可充当电子元件的“外衣”,防止其因暴露于潮湿环境而被损坏(腐蚀);还可用于飞机机翼和玻璃表面的透明涂料,在冻雾下防止结冰霜。该研究成果发表在国际纳米
简述造成恒温恒湿培养箱结冰的原因
简述造成恒温恒湿培养箱结冰的原因 恒温恒湿培养箱的外表采用烤漆亚光镀层避免光辐射,隔板可以任意调节,采用离芯风机,国内的风道设计使冷热充分混合后吹至箱体确保温度更精,均匀度更佳微电脑智能控制,液晶显示控制温度,湿度,时间,超温报警功能。进风口→蒸发器→电加热→混合→工作室内胆采用镜面
生化培养箱出风口结冰问题解决
生化培养箱具有制冷和加热双向调温系统,使用范围广,一年四季均可保持在恒定温度,是水体分析和BOD测定、微生物、遗传、医学、卫生防疫、环保、农畜等科研、教育部门不可缺少的实验室设备,广泛应用于恒温试验、培养试验、环境试验等。 生化培养箱微电脑全自动控制,触摸开关,操作简便;可编程多段控制方式,白天、
科学家解释热水为什么比冷水结冰快
北京时间11月5日, 英国每日电邮报道,自亚里士多德时代起,热水为什么比冷水结冰更快这个现象一直让世界上最聪明的科学家们困惑不已。目前一组物理学家小组声称已经解开了这一世纪难题。这个现象名为姆潘巴现象,它是指水与大多数其他液体不相同,它从热的状态变成固体要比从室温状态下变成固体时间更短。科学
简述造成恒温恒湿培养箱结冰的原因
恒温恒湿培养箱的外表采用烤漆亚光镀层避免光辐射,隔板可以任意调节,采用离芯风机,国内的风道设计使冷热充分混合后吹至箱体确保温度更精,均匀度更佳微电脑智能控制,液晶显示控制温度,湿度,时间,超温报警功能。进风口→蒸发器→电加热→混合→工作室内胆采用镜面不锈钢材料,圆弧形设计避免了直角风量产生死角而均
低温恒温槽用着突然结冰了怎么办?
很多客户因为化学或者温度计量检定实验需要,第一次购买低温恒温槽,例如设置在2摄氏度,用着用着发现水面出现了冰花(结冰了),客户也表示疑惑,水的凝固点是0度啊,怎么会出现冰花呢?舜玛仪器小编为您解答:在5摄氏度以下来使用低温恒温槽不能用水作为介质,需要更换酒精或者乙二醇水混合物,或者硅油也可以选择。在
化学所首次揭示冷表面冰晶生长模式
输电设备、飞行器、船舶及地面交通工具等表面的结冰会影响这些设备正常运行,严重时对经济和民生造成巨大损失。2008年初,我国南方地区遭受的冰雪灾害,直接经济损失达上千亿元。我们每年用于冰箱、空调除冰、除霜所耗电量与三峡发电站年发电量相当。解决冷表面结冰问题的关键是从分子层面理解并控制冰在冷表面上的
863项目“纳米改性胶凝及涂层复合材料制备应用”通过验收
由于纳米材料特殊的结构,使材料自身具有小尺寸效应、量子效应、宏观量子隧道效应、表面和界面效应等,从而使其具有许多与传统材料不同物理、化学性质。从20世纪80年代以来,纳米科技研究在世界范围内收到高度重视,很多技术已实用化。目前,纳米科技已经渗透到多个传统产业中,如染料、涂料、建筑材料、食品等。
“最黑”材料制成高精度激光功率检测器
据美国科学促进会网站8月18日报道,美国国家标准技术研究院利用世界最黑材料——森林状多壁碳纳米管作涂层,研制出一种激光功率检测器,可用于光通讯、激光制造、太阳能转换以及工业和卫星运载传感器等先进技术领域的高精度激光功率测量。研究论文发表在最新的《纳米快报》上。 这种新型检
美研发出更持久透明超光滑的涂层-可用于制造医疗设备
美国哈佛大学生物工程研究人员近日对一种光滑液体渗透表面(SLIPS)技术进行了进一步改进,这种超光滑表面被称为世界上最光滑的人造涂层,具有更加持久和透明的特性。 这种光滑液体渗透表面(SLIPS) 技术不是根据荷叶的超疏水性原理,而是受到食肉猪笼草的启发。这种植物具
进口涂层测厚仪
进口涂层测厚仪使用注意事项由于电磁场在不同表面结构有不同的分布形式,从而导致测量误差。为避免因操作而引起的误差,在使用时,请遵循以下原则:1、在同一点重复测量时,每次将探头离开10cm以上,间隔几秒钟后再测,避免被测材料因探头磁化后,影响下次测量结果;2、使用时,平面调零测平面,凸面调零测凸面,凹面
涂层测厚仪作用
涂层测厚仪http://www.chem17.com/st191067作用一、原理 磁性测厚原理:当测头与覆层接触时,测头和磁性金属基体构成一闭合磁路,由于非磁性覆盖层的存在,使磁路磁阻变化,通过测量其变化可计算覆盖层的厚度。 涡流测厚原理:利用高频交电流在线圈中产生一个电磁场,当测头与覆盖
供应涂层测厚仪
一、磁吸引力测量原理及涂层测厚仪 探头与导磁钢材之间的吸力大小与处在这两者之间的距离成一定比例关系。这个距离就是涂层的厚度。根据这一原理制成涂层测厚仪,只要涂层与基体的导磁率之间足够大,就可进行涂层测量。鉴于大多数工业品采用结构钢和热轧冷轧钢板冲压成型,所以磁性测厚仪应用广。涂层测厚仪基本结
电子涂层测厚仪
MINITEST 600电子涂层测厚仪■ 小巧实用、测量快速 ■ 探头顶部由非常耐磨的硬质材料制成 ■ F型探头用于钢铁上的非磁性涂镀层,如油漆、塑料、搪瓷、铬、锌等 ■ N型探头用于有色金属(如铜、铝、奥氏体不锈钢)上的所有绝缘层,如阳极氧化膜、油漆、涂料等 ■ FN型探头为开发的两用探
涂层测厚仪特点
涂层测厚仪特点:◆采用了磁性测厚方法,可无损地测量磁性金属基体(如钢、铁、合金和硬磁性钢等)上非磁性 覆盖层的厚度(如锌、铝、铬、铜、橡胶、油漆等) 。◆可进行零点校准及二点校准,并可用基本校准法对测头的系统误差进行修正。◆具有两种测量方式:连续测量方式(CONTINUE)和单次测量方式(SINGL
新型涂层测厚仪
涂层测厚仪 型号:TC-1250一、仪器特点TC系列涂层测厚仪是高新技术的结晶,采用微机技术,精度高,数字显示,示值稳定,功耗低,操作方便,无校正旋钮,单探头全量程测量,体积小,重量轻,且具有存储、读出、统计、低电压指示等功能,其性能达到同类仪器的先进水平。二、应用范围本仪器采用磁性测厚法,可以方
涂层测厚仪功能
1、具有两种测量方式:连续测量方式(CONTINUE)和单次测量方式(SINGLE);2、具有两种工作方式:直接方式(DIRECT)和成组方式(Appl);3、设有五个统计量:平均值(MEAN)、zui大值(MAX)、zui小值(MIN)、测试次数(NO.)、标准偏差(S.DEV);4、可采用两种方
涂层测厚仪概述
涂层测厚仪,涡流测厚仪,涂镀层厚度计,漆膜厚度计 型号:MHY-27351MHY-27351涂层测厚仪,能同时测量磁性基材表面(如钢、铁等)的非磁性涂镀层(如油漆、陶瓷、铬等),以及非磁性金属基材表面的非导电涂镀层(如油漆等)。本仪表内置高精密双探头,利用电磁感应和涡流效应,全自动探测基材属性,计算
涂层测厚仪校准
涂层测厚仪校准时需注意哪些问题?应注意下列要点:1.正确的校准对精确测量是至关重要的。对于校准,将采用一个与后来被测量的物体相类似的样品,即同时,标准试样和衡量的对象应具有相同的形状和几何。基本上,更多测量对象的标准试样匹配,测量结果将更加精确。 2.确定校准样品和被测量物体的以下属性匹配: --
表面涂层测厚仪
表面涂层测厚仪涂层测仪除了可以测量磁性金属基体和非磁性基体上的涂层,亦可以测量金属电镀的镀层测厚仪,因此,涂层测厚仪,通常也称为涂镀层测厚仪。涂层测厚仪涂镀层测厚仪根据测量原理一般有以下五种类型:1.磁性测厚法:适用导磁材料上的非导磁层厚度测量.导磁材料一般为:钢\铁\银\镍.此种方法测量精度高2.
海洋所超双疏自清洁防腐防冰涂层研究获新进展
近日,中国科学院海洋研究所在有机-无机复合杂化超双疏自清洁防腐防冰涂层研究方面取得新进展,相关成果发表在《材料科学与技术杂志》。有机-无机复合杂化超双疏涂层及其长效防腐与延迟结冰功能。海洋研究所供图 受荷叶效应启示的超疏水材料,因优异的界面不润湿特性使其在自清洁、海洋防腐、低温防覆冰、液体输运
中国和美国研究人员联手研发出一种纳米颗粒流感疫苗
中国和美国研究人员联手研发出一种纳米颗粒流感疫苗,在小鼠实验中能够有效抵御甲型流感病毒。这种疫苗为研发通用流感疫苗等药物开启新的思路。 近期发表在美国《国家科学院学报》上的研究显示,这种颗粒由双层多肽组成,可模仿流感病毒发出生物信号,诱发双重免疫反应。 研究人员说,双层疫苗的核心由流感病毒核
点石成金:研究人员让这种病毒能按需形成黄金纳米粒子
据外媒报道,细菌和病毒可以成为多产的小生物,人们可以利用它们制造材料、燃料、石油、氧气、抗生素等。现在,来自加州大学河滨分校的研究人员发现,病毒还可以构建黄金纳米粒子,这种粒子可以用来净水以及帮助降低生产电子元件的成本和时间。 image.png 据悉,加州大学研究人员所用的病毒是一
点石成金:研究人员让这种病毒能按需形成黄金纳米粒子
据外媒报道,细菌和病毒可以成为多产的小生物,人们可以利用它们制造材料、燃料、石油、氧气、抗生素等。现在,来自加州大学河滨分校的研究人员发现,病毒还可以构建黄金纳米粒子,这种粒子可以用来净水以及帮助降低生产电子元件的成本和时间。 image.png 据悉,加州大学研究人员所用的病毒是一种叫做M
美国开发出智能过滤涂层
据物理学家组织网近日报道,美国密歇根大学开发出一种表面可变形的智能过滤涂层,仅仅利用重力即可将油从水中分离,对于石油泄漏污染清理、污水处理、燃料应用中的石油净化及化妆品行业等将起到十分有益的作用。该研究结果发表在最新一期《自然通讯》期刊上。 密歇根大学材料科学与工程助理教授阿尼什
ACS-Nano:金纳米粒子可附着抗癌药,实现精准治疗
近日,来自瑞士日内瓦城大学(UNIGE)的研究人员联合国家能力研究中心(NCCRs)的“生物启发材料”研究所、英国斯旺西大学医学院首次证明了金纳米粒子不会损害人体B淋巴细胞的体外免疫功能,并且对可能存在不良反应或耐药性的药品功效提高有明显作用。相关的研究结果已发表于ACS Nano。https: