新型纳米涂层可防止物体表面结冰

美国哈佛大学的研究人员开发出了一种纳米涂层,在低温下能使滴溅在其表面的水滴未及结冰就滑落。该技术有望实现永不结冰的飞机机翼和输电线路、保温性能更佳的建筑以及在严寒和大雪中也能保持通畅的高速公路,并且与目前在除冰融雪中所采用的化学及加热方法相比,该技术效率更高也更为环保。相关论文发表在《美国化学学会·纳米》杂志网络版上。 负责该项目的哈佛大学工程与应用科学学院的科学家乔安娜·艾森贝格和艾米·史密斯·贝利尔表示,其最初的灵感来自于自然界。 艾森贝格说:“一些动物和昆虫解决问题的方案让我们着迷,例如,蚊子能够防止自己的眼睛起雾,水黾(一种水生半翅目类昆虫,俗称水板凳)能够借助脚上的油质细毛防止水的侵入,从而完美地漂浮在水面。因此,我们希望采取一种与以往完全不同的策略和设计来使材料具有天然的抗结冰能力。” “从过去的研究中,我们意识到冰的形成并非一个静态过程,要解决结冰问题,必须详细了解冰在物体表面......阅读全文

钢板涂层测厚仪|铜涂层测厚仪|铝基涂层测厚仪

仪器特点简单-直接测量(无需校准即可满足大部分应用)-单手菜单操作--灯光提示:便于在嘈杂的环境中确定已获得测量结果-重置功能可迅速将测厚仪还原到出厂状态耐用-耐磨探头-防酸、防油、防水、防溶剂、防尘,符合或超过IP5X标准-耐磨防腐蚀液晶显示屏-防撞击橡胶保护套-每台仪器都有校准证书,符合NIST

防水材料迎来了新的春天!

  现如今的防水材料强度都较低,但近日,澳大利亚国立大学的研究者们研制出了一种高强度的防水材料,这种材料除了防水材料的应用之外,还可以广泛应用于防腐、自我清洁、防油等功能性涂层中。防水材料  近日,澳大利亚国立大学(ANU)研制出了一种具有杰出防水能力的喷雾材料,这种材料可以使摩天大楼保持清洁,也可

兰州化物所研发加固仿生自清洁硅基仿生材料

  出淤泥而不染的荷叶,捕虫高手猪笼草,科学家们研究仿生,利用自然界赋予的神奇功效为人类服务。然而,仿生“荷叶”和“猪笼草”却有一颗“玻璃心”,一旦受到外界触碰,“自清洁”功能也随即消失。  “我们要做可以应用的硅基仿生自清洁材料。”中科院兰州化学物理研究所甘肃省黏土矿物应用研究重点实验室张俊平研究

纳米碳纤维涂层固相微萃取探头的制备及性能分析

摘 要: 采用纳米碳纤维(CNF) 作为固相涂层制备了固相微萃取探头(SPME) 并行了评价。该涂层对苯系物(BTX) 富集能力强, 最高使用温度可达260 ℃,250 ℃解析条件下使用50 次以上涂层无脱落现象。与活性碳涂层相比, 尽管萃取量略小, 但其解析时间仅为活性炭的60 % , 具有更高的

电感耦合等离子体质谱法分析涂层表面纳米微粒通过身..

电感耦合等离子体-质谱法分析涂层表面纳米微粒通过身体接触的传输引言   随着纳米微粒在消费品中的 使用越来越广泛,人体与纳米微粒的接触与迁移也越来越受到关注,并由此带来一个问题:消费品中的纳米微粒会迁移到人体中吗?人们主要通过身体接触来与这些产品发生互动,所以有必要了解纳米微粒是如何通过身体接触实现

新型防冰材料问世-冬季结冰不再可怕

  冰雪灾害有时让人望冰兴叹,无可奈何。但美国休斯顿大学研究人员近日开发出一种防冰新材料,有望彻底解决飞机、缆线等表面的结冰问题。  科研人员发表在国际材料期刊《Materials Horizons》的论文称,他们提出了一种叫做应力局部化的新型物理理论,用来改变和预测新材料的性能。基于这些预测,他们

生化培养箱结冰的多种原因分析

生化培养箱是生物、遗传工程、医学、卫生防疫、环境保护、农林畜牧等行业的科研机构、大专院校、生产单位或部门实验室的重要试验设备,广泛应用于低温恒温试验、培养试验、环境试验等。适用于环境保护、卫生防疫、药检、农畜、水产等科研、院校和生产部门。是水体分析和BOD测定,细菌、霉菌、微生物的培养、保存、植物栽

低温恒温槽结冰了怎么办

  低温恒温槽是一种常用的实验仪器,在化学实验室中使用时,若做低温实验,同时介质选用酒精或乙二醇水合物,在使用酒精作为介质的时候要注意及时添加,酒精具有一定的挥发性,使用的时候也需要注意安全,一般选用纯度大于百分之95的酒精就可以了。结冰现象的发生主要是因为吸收了空气中的水汽,我们可以通过将浴槽的槽

培养箱循环风口结冰什么原因?

循环风口结冰:每种制冷的仪器都会有化霜周期,在此期间内压缩机不制冷。靠加热元件将冷凝器上的冰融化。融化后的水很有可能会聚集到出风口最后导致结冰 。

研究人员在人体内首次检测出碳纳米管

  据报道,日前法国研究人员从居住在巴黎的儿童肺部发现了碳纳米管,这是碳纳米管首次在人体内被检测出来。  由于具有超强韧性、重量轻和导电性能佳等特性,碳纳米管在诸如计算机、服装、医疗保健等领域显示出了巨大的应用潜力。但是,小鼠实验表明,注入碳纳米管可引起类似于由石棉引发的免疫反应,这让人们对碳纳米管

研究人员首次制备各向异性纳米复合稀土永磁多层膜

多层膜的XRD谱  近日,中科院金属所沈阳材料科学国家实验室磁性材料与磁学研究部的科研人员在国际上首次成功制备了硬磁相、软磁相和隔离层组成的各向异性纳米复合稀土永磁多层膜。  科研人员认为,制备和研究各向异性纳米复合稀土永磁多层膜材料,对弄清交换耦合机制和继续提高纳米复合磁体的磁性能十分重

英国剑桥大学研究人员开发出迄今最小的纳米像素

  英国剑桥大学研究人员开发出迄今最小的像素,其尺度以纳米计算,只有目前智能手机像素的百万分之一大小,有望用于制造超大幅面的柔性显示屏,相关研究发表于5月10日《科学进展》杂志上。  这种像素的中心只有几个纳米大小的金粒子,它的外面包裹着聚苯胺分子涂层。如果外界施加的电流发生变化,这种像素就会改变颜

美研究人员开发出可“侦察”到肿瘤的纳米粒子

  美国研究人员最新开发出一种纳米粒子,外表呈棒状,可以随血液流动“侦察”到肿瘤部位,帮助将药物指引到病灶处,从而有效消灭肿瘤。   美国麻省理工学院等机构的研究人员在英国新一期《自然·材料》杂志报告说,肿瘤部位的血管通常会有病态变大的孔洞,纳米粒子进入这些孔洞中会刺激周边组织,使机体发出一种类似

美研发新型纳米材料-太阳能涂层光热转换率达90%

  “我们想要创造一种材料,能够让阳光无处可逃,你可以称为‘阳光黑洞’。”美国加州大学圣地亚哥分校雅各布斯工程学院机械与航空工程系教授金松河(音译)说。该校一个多学科工程团队开发出一种新型纳米材料,其捕捉太阳能转化成热能的效率高达90%,不仅如此,它还能承受700摄氏度的高温,暴露在空气和湿度变幻莫

mRNA细胞溶质传递的病毒模拟细胞膜涂层纳米颗粒的研发

  随着纳米技术的飞速发展,纳米给药已成为现代医疗的一个重要发展方向。纳米药物的一大挑战是细胞摄取药物后有效的内体逃逸,因为大多数药物载荷需定位于除内体外的亚细胞结构后发挥活性,而病毒可以通过内吞作用后引发膜融合,由此将其遗传物质递送至宿主细胞的胞质中。既往对于甲型流感病毒的研究显示,病毒表面发现的

兰州化物所在纳米高熵太阳能吸收涂层研究中获进展

高熵材料的多主元设计为功能材料的研究与应用提供了平台。高熵材料丰富的结构特征和广阔的成分空间,允许通过精确选择元素组合来调控材料的电子结构,从而调整费米能级附近的电子态密度,促进d-d带间跃迁,对于开发高效光热转换材料具有重要意义。中国科学院兰州化学物理研究所资源化学与能源材料研究中心研究员高祥虎团

可重复使用的纳米颗粒涂层海绵去除水中的重金属

  于一种实验性的新海绵可以让从水中去除重金属污染物的过程比以往更容易。只需一次处理,该设备就能将受污染的水降低到安全可饮用的水平。在之前两项研究的基础上,伊利诺伊州西北大学的科学家正在开发这项技术。  研究人员开始使用一种廉价的市售纤维素海绵,并将其置于掺有锰的戈壁石纳米颗粒的泥浆中。然后他们将其

可用于mRNA细胞溶质传递的病毒模拟细胞膜涂层纳米颗粒

  随着纳米技术的飞速发展,纳米给药已成为现代医疗的一个重要发展方向。纳米药物的一大挑战是细胞摄取药物后有效的内体逃逸,因为大多数药物载荷需定位于除内体外的亚细胞结构后发挥活性,而病毒可以通过内吞作用后引发膜融合,由此将其遗传物质递送至宿主细胞的胞质中。既往对于甲型流感病毒的研究显示,病毒表面发现的

兰州化物所在纳米高熵太阳能吸收涂层研究中获进展

高熵材料的多主元设计为功能材料的研究与应用提供了平台。高熵材料丰富的结构特征和广阔的成分空间,允许通过精确选择元素组合来调控材料的电子结构,从而调整费米能级附近的电子态密度,促进d-d带间跃迁,对于开发高效光热转换材料具有重要意义。中国科学院兰州化学物理研究所资源化学与能源材料研究中心研究员高祥虎团

如何解决生化培养箱出风口结冰?

生化培养箱是一款比较的环境实验设备,主要是由于它的广泛应用。具有制冷和加热双向调温系统,温度可控的功能,广泛应用于低温恒温试验、培养试验、环境试验等。生化培养箱微电脑全自动控制,触摸开关,操作简便;可编程多段控制方式,白天、黑夜均可单独设置温度、湿度、光照度和时间等。风道式通风,工作室风速柔和,温度

电热恒温培养箱为什么会出现结冰

顾名思义,从电热恒温培养箱的名称中,我们就可以看出这是一种具体控温控湿功能的设备。它们主要用于工业产品恒定、湿热交变的可靠性试验,对产品的物理以及其他相关性进行环境模拟测试,以此来判断产品的性能。但经常使用的人却发现,电热恒温培养箱有时候也会有结冰现象发生。这是一种什么情况呢?培养箱为什么会结冰呢?

热水、冷水谁先结冰,-科学家也很懵

  如果有人问你:“冷水和热水哪个先结冰?”相信你一定会觉得这个提问的人是不是傻了,当然是冷水先结冰了。然而,事实上有时候还真未必。特定条件下可能热水结冰比冷水还要快,这是怎么回事呢?  其实,历史上诸多学者如亚里士多德、培根和笛卡尔等都曾对类似现象有所描述但是均未能给出完美的解释。甚至现代科学家们

电热恒温培养箱为什么会出现结冰

  顾名思义,从电热恒温培养箱的名称中,我们就可以看出这是一种具体控温控湿功能的设备。它们主要用于工业产品恒定、湿热交变的可靠性试验,对产品的物理以及其他相关性进行环境模拟测试,以此来判断产品的性能。但经常使用的人却发现,电热恒温培养箱有时候也会有结冰现象发生。这是一种什么情况呢?培养箱为什么会结冰

研究人员开发基于纳米抗体的酶联免疫分析传感器

  7月7日,记者从广东工业大学获悉,该校生物医药学院教授赵肃清团队与美国加州大学戴维斯分校合作,首次制备出高亲和力的可溶性环氧化物水解酶抑制剂(EC5026和TPPU)纳米抗体,并用于开发灵敏的间接竞争性免疫分析传感器。相关研究论文发表于《药物分析学报》(Journal of Pharmaceut

美研究人员发明纳米级护肤乳液或可预防皮肤癌

  美国西北大学研究人员日前公布了一项突破性的研究成果:用含有纳米粒子的外用护肤乳液进行基因治疗。这听起来有点不可思议,但它将使得未来的基因治疗变得简单,病人可能不用再打针或者服药。   研究人员阿米・帕勒和查德・米尔金将化学和皮肤医学完美结合,制成了不到人头发直径1/1000的核酸块。这些核酸块

研究人员借纳米粒子来提高3D打印Inconel-625

  新加坡A * STAR制造技术研究所和材料研究与工程研究所的研究人员使用二硼化钛纳米粒子改善了3D打印超级合金的物理、热力、机械性能。   超耐热合金,能耐受高温和应力的合金已被证明对科学家来说是非常有用的。 Hastelloy,Inconel和Waspaloy等材料因其具有极高的抗热能力经常

研究人员发现防御纳米粒子的祖先表观遗传防御机制

来自芬兰综合方法开发与验证中心(FHAIVE FHAIVE)和坦佩雷大学的科学家们发现了一种与纳米粒子暴露有关的新型反应机制,这种机制在不同的物种中是共享的。博士研究员Giusy del Giudice博士通过对纳米材料分子反应的大量数据分析,揭示了一种祖先的表观遗传防御机制。这一发现阐明了不同物种

仿生超疏液涂层可解决5G天线罩“雨衰效应”

记者从中国科学院兰州化学物理研究所获悉,该所环境材料与生态化学研究发展中心硅基功能材料组与山东鑫纳超疏新材料有限公司合作,研发出了兼具优异耐压性、机械稳定性和耐候性的5G天线罩、雷达罩超疏液防雨衰涂层,能有效解决5G信号在降雨时的“雨衰效应”。相关研究论文近日发表于《自然·通讯》。5G天线罩是5G基

涂层测厚仪

涂层测厚仪/磁性涂层测厚仪/一体铁基/磁性膜厚计型号:MHY-25367涂层测厚仪是具有广泛使用范围的磁性仪器。其技术参数完全符合国家标准。本仪器是磁性便携式覆层测厚仪,它能快速、无损伤、精密地进行涂、镀层厚度的测量。既可用于实验室,也可用于工程现场。本仪器能广泛地应用在制造业、金属加工业、化工业、

涂层测厚仪

UTG-32涂层测厚仪是一种用电池供电的便携式测量仪器,可快速无损地测量导磁材料表面上非导磁覆盖层厚度。例如:铁和钢上的铜、锌、镉、铬镀层和油漆层等。采用单片微机技术,使仪器具有操作简单、使用方便、稳定性好、测量精度高等优点。该仪器具有数理统计功能,可直接显示测量的平均值、zui大值、zui小值、标