Antpedia LOGO WIKI资讯

中科院团队实现光学超分辨成像精度破极限达4.1纳米

中国科大郭光灿院士领导的中科院量子信息重点实验室孙方稳研究组,利用光学超分辨成像技术实现了对单个自旋态的纳米量级空间分辨率测量和操控,其成像精度达到4.1纳米。研究成果1月2日发表在《自然》子刊《光:科学与应用》上。 了解微纳尺度物体的物理属性及动力学过程,需要纳米尺寸的探测器,纳米尺度的固态量子测量技术因此得到快速发展。但实现高空间分辨率的电磁场等物理量测量,不仅需要高精度的成像和分辨,还需要高精度量子态操控。而通常的光学成像受到衍射极限的限制,分辨率只能达到300纳米左右。 金刚石中的氮—空位色心是金刚石的一种发光缺陷,由一个氮杂质和邻近的空位组成,近几年在量子信息领域得到广泛关注,被认为有望实现室温下的量子计算和高灵敏度量子测量。孙方稳研究组通过氮离子束注入制备了金刚石氮—空位色心,并利用色心中不同电荷态发光的波长依赖特性,对色心的电荷态进行了高效控制。他们进一步通过对不同波长激光的光束整形,实现了突破光学衍射极限......阅读全文

超高分辨成像

超高分辨成像 常规共聚焦的XY分辨率只有200nm左右,奥林巴斯专利FV-OSR超高分辨技术可达到120nm,适用于大部分样品,无需特殊荧光染料,常规荧光染料、荧光蛋白均可进行成像,最多可实现4色同步超高分辨率成像。 

智能算法实现高分辨率高精度相位成像和测量

不同方法对(a)蛔虫卵和(b)水蚤后足的成像结果,包括最终重建的相位图及其相应的光学厚度测量。论文作者供图  双波长同轴数字全息(Dual-wavelength in-line digital holography , DIDH)是高精度定量相位成像的常用方法之一。然而,在实际DIDH成像中,两个固

中科院团队实现光学超分辨成像精度破极限达4.1纳米

  中国科大郭光灿院士领导的中科院量子信息重点实验室孙方稳研究组,利用光学超分辨成像技术实现了对单个自旋态的纳米量级空间分辨率测量和操控,其成像精度达到4.1纳米。研究成果1月2日发表在《自然》子刊《光:科学与应用》上。  了解微纳尺度物体的物理属性及动力学过程,需要纳米尺寸的探测器,纳米尺度的固态

STED超高分辨成像

 STED超高分辨成像采用受激发损耗(STED)技术,实现XY最小分辨率≤50nm,Z轴最小分辨率≤130nm。固态长寿命损耗激光器:592nm,660nm,775nm,实现不同染料的超高分辨成像,可见光全光谱覆盖。STED WHITE 油浸物镜 (HC PL APO 100x/1.40 OIL),

前沿显微成像技术专题——超分辨显微成像(1)

从16世纪末开始,科学家们就一直使用光学显微镜探索复杂的微观生物世界。然而,传统的光学显微由于光学衍射极限的限制,横向分辨率止步于 200 nm左右,轴向分辨率止步于500 nm,无法对更小的生物分子和结构进行观察。突破光学衍射极限,一直是科学家们梦想和追求的目标。虽然随着扫描电镜、扫描隧道显微镜及

前沿显微成像技术专题——超分辨显微成像(2)

上一期我们为大家介绍了几种主要的单分子定位超分辨显微成像技术,还留下了一些问题,比如它的分辨率是由什么决定的?获得的大量图像数据如何进行重构?本期我们就来为大家解答这些问题。单分子定位超分辨显微成像的分辨率单分子定位超分辨显微成像的分辨率主要由两个因素决定:定位精度和分子密度。定位精度是目标分子在横

高速图像重建助力实时超分辨成像

    JSFR-SIM算法和传统Wiener-SIM算法的重建流程对比示意图。    JSFR-SIM可实时显示微管和线粒体动态。    高速实时超分辨结构光照明显微成像光路(a)和快速实时超分辨结构光照明显微成像系统样机(b)。图片来源:论文作者    超分辨荧光显微成像技术打破

高分辨透射电镜成像原理

光学透镜是通过光打在物体上,物体漫反射后进入人眼成像的然而可见光的波长最短也是390纳米,可分辨的最小分辨率也是半波长195纳米远远达不到人们的需要,所以既然光可以拿来观测,其他什么波动也能拿来观测呢?电子束以电子束为检测物质的显微镜可以把波长压缩到很小,然后以电子束为“光”可以让我们看到很细微的结

高分辨透射电镜成像原理

光学透镜是通过光打在物体上,物体漫反射后进入人眼成像的然而可见光的波长最短也是390纳米,可分辨的最小分辨率也是半波长195纳米远远达不到人们的需要,所以既然光可以拿来观测,其他什么波动也能拿来观测呢?电子束以电子束为检测物质的显微镜可以把波长压缩到很小,然后以电子束为“光”可以让我们看到很细微的结