Antpedia LOGO WIKI资讯

硼酸盐二阶非线性光学晶体设计与合成研究获进展

硼酸盐晶体在二阶非线性光学晶体材料中占有非常重要的地位。根据阴离子基团理论,在硼酸盐晶体中具有共轭π电子体系的平面三角形BO33-基团比BO4四面体具有更大的极化率。最近研究表明,与BO33-基团等电子的硝酸根或碳酸根具有与BO33-基团相同的几何构型,它们也是非常重要的非线性活性基团。提高化合物中平面三角形结构基元的密度并使得它们在三维结构中平行排列,通过这些基团的协同极化作用可以提高化合物的二阶非线性光学系数。 在国家基金委重点和面上项目的资助下,中国科学院福建物质结构研究所结构化学国家重点实验室研究员毛江高领导的课题组提出将硼酸根与硝酸根两种平面三角形结构基元复合到同一化合物中的设计思路。在温和水热条件下,该课题组得到了首列极性结构的铅硼酸-硝酸盐Pb2(BO3)(NO3)(空间群P63mc),结构中铅离子与硼酸根连接成蜂窝型[Pb2(BO3)]∞层,没有参与配位的硝酸根位于层之间,所有硼酸根与硝酸根都平行排列,由于......阅读全文

锌硼酸盐紫外非线性光学晶体研究获进展

  紫外(200 nm<λ<400 nm)非线性光学晶体是全固态激光器输出紫外激光的关键元件,近几十年被国内外科研机构广泛研究。目前,266 nm(Nd: YAG四倍频)紫外激光输出主要由β-BaB2O4(β-BBO)和CsLiB6O10(CLBO)两种晶体实现。然而,β-BBO晶体过大的双折射率及

硼酸盐功能晶体新结构研究获进展

  硼酸盐(Borates)结构类型丰富,具有宽的透光范围、高的光损伤阈值、较好的热稳定性和化学稳定性等一系列优良的物理化学性能,在非线性光学材料、荧光材料、激光晶体材料等领域有着广泛而重要的应用。近50年来,人们已经发现了数以千计的新型硼酸盐晶体,使其成为探索新型功能晶体

新疆理化所锌硼酸盐紫外非线性光学晶体研究获进展

  紫外(200 nm<λ<400 nm)非线性光学晶体是全固态激光器输出紫外激光的关键元件,近几十年被国内外科研机构广泛研究。目前,266 nm(Nd: YAG四倍频)紫外激光输出主要由β-BaB2O4(β-BBO)和CsLiB6O10(CLBO)两种晶体实现。然而,β-BBO晶体过大的双折射率及

新疆理化所非线性光学材料卤素硼酸盐研究获进展

  目前,制约紫外激光发展和应用的关键问题在于材料,特别是作为增益介质的紫外/深紫外非线性光学晶体材料,这也是国际光电子材料领域备受关注的一个研究热点。对于紫外波段倍频晶体,由于该波段的激光频率较高,波长较短。为解决此问题,目前国内外一般采用碱金属和碱土金属硼酸盐和卤素硼酸盐作为研究对象。   中

福建物构所碘硼酸盐非线性光学晶体材料研究获进展

  硼酸盐体系长期以来都是无机非线性光学晶体材料的研究热点,其中BBO(β-BaB2O4)和LBO(LiB3O5)晶体材料得到商业化的生产及应用。   该类材料具有较大的倍频效应源自于其扭曲的平面环状硼氧阴离子基团所具有的非对称性的电子分布特征。在对硼氧框架中引入其它非对称性基团以提高其性能的设计

硼酸盐二阶非线性光学晶体设计与合成研究获进展

  硼酸盐晶体在二阶非线性光学晶体材料中占有非常重要的地位。根据阴离子基团理论,在硼酸盐晶体中具有共轭π电子体系的平面三角形BO33-基团比BO4四面体具有更大的极化率。最近研究表明,与BO33-基团等电子的硝酸根或碳酸根具有与BO33-基团相同的几何构型,它们也是非常重要的非线性活性基团。提高化合

青海盐湖所在硼酸盐溶液结构研究中取得进展

  大量研究表明,硼酸根离子的水合及缔合作用对于理解和认识硼酸盐矿物的沉积和结晶过程、硼酸盐溶液木材防腐与阻燃能力以及硼酸-压水核反应堆(PWRs)性能等具有重要作用。然而,关于硼酸根离子在原子/分子水平上的水合及缔合信息尚无明确的报道。  中国科学院青海盐湖研究所盐湖资源化学实验室溶液结构课题组与

青海盐湖所在硼酸盐溶液结构研究中取得进展

  大量研究表明,硼酸根离子的水合及缔合作用对于理解和认识硼酸盐矿物的沉积和结晶过程、硼酸盐溶液木材防腐与阻燃能力以及硼酸-压水核反应堆(PWRs)性能等具有重要作用。然而,关于硼酸根离子在原子/分子水平上的水合及缔合信息尚无明确的报道。  中国科学院青海盐湖研究所盐湖资源化学实验室溶液结构课题组与

新疆理化所含孤立硼氧基元硼酸盐结构化学研究获进展

  硼酸盐具有丰富多样的结构类型,平面BO3和四面体BO4可通过不同的连接方式呈现出千变万化的配位,导致多样的物化性质变化。孤立B-O基元(零维)作为特殊的一类硼氧基元在光学性质方面有特殊的优越性,如平行排列的BO3(如KBe2BO3F2,KBBF)和B3O6(β-BaB2O4,BBO)有利于获得大

新疆理化所设计合成新型硼酸盐光学晶体材料

  硼酸盐具有丰富的化学结构,B原子可采用BO3和BO4两种配位方式,并进一步聚合成一维的链、二维的层和三维的网络,使硼酸盐具有丰富的晶体结构。因此,硼酸盐是设计合成新型光学晶体材料的优选体系。基于阴离子基团理论,BO3平面基元具有不对称电子云分布的π 共轭轨道,具有较大的微观极化率,平行排列的BO