色彩背后的科学,远不是你想象的那么简单
这个世界给而我们最直接的印象,就是颜色。因为太熟悉,所以我们很难求想象如果这个世界没有了颜色,会是什么样子?可你有没有想过,颜色到底是从哪里来的呢? 为了回答这个问题,我们必须先了解人是怎样进行颜色感知的,以及物理上光是和人眼是怎样互动的。 颜色从哪里来 图源: Food Navigator 白光混合了所有的颜色,包括那些肉眼无法看见的。当我们说这个东西有颜色的时候,我们实际上是说某种波长的光比其他波长的光更强的反射了出来。光线的呈现,就是色彩。 不同物质的结构不同,组成物质的基础——原子,所处的状态也不一样。原子有许多不同能量的(电子)状态,原子可以吸收一个光子迁移到一个能量比较高的状态或者放出一个光子缓和到一个能量比较低的状态。原子从一个状态到另一个状态的迁移中发生了能量的变化,把这个能量差所对应的光子(正好具有这个能量的光子)的频率叫做共振频率。 当光照射到原子的时候,处在较低能量状态的原子可以吸收一个共......阅读全文
闪存技术有望带来太赫兹频率光子芯片
闪存技术有望带来太赫兹频率光子芯片将计算机运行速度提高一百倍科技日报北京3月26日电(记者刘霞)据美国《每日科学》网站25日报道,以色列科学家提出了一种新型集成光子回路制备技术——在微芯片上使用闪存技术,有望使体型更小、运行速度更快的光子芯片成为现实,运算频率达太赫兹量级,从而将计算机和相关通信设备
闪存技术有望带来太赫兹频率光子芯片
据美国《每日科学》网站25日报道,以色列科学家提出了一种新型集成光子回路制备技术——在微芯片上使用闪存技术,有望使体型更小、运行速度更快的光子芯片成为现实,运算频率达太赫兹量级,从而将计算机和相关通信设备的运行速度提高100倍。 北京大学现代光学所陈建军研究员对科技日报记者说,到目前为止,研制
原子吸收光子,如果光子的能量大于hv是不是原子要被电离
不一定的,原子可以吸收很多种不同的能量的额波,如果能量为hv的波被内层电子吸收,这个电子不会被电离,只会跳跃到高层的电子层,只有最外层的电子如果满足吸收hv能量能电离才会电离,也可能是2hv,3hv
闪存技术有望带来太赫兹频率光子芯片应用案例一
闪存技术有望带来太赫兹频率光子芯片根据科技日报消息,据美国《每日科学》网站报道,以色列科学家利用金属氧化氮氧化硅(MONOS)结构设计出一种新型集成光子回路制备技术。该技术在微芯片上使用闪存技术,有望使体型更小、运行速度更快的光子芯片成为现实,运算频率达太赫兹量级,从而将目前标准的8—16千兆赫计算
中国科大实现轨道角动量光子的量子频率转换
中国科学院院士、中国科学技术大学教授郭光灿领导的中科院量子信息重点实验室在轨道角动量(OAM)光子的量子频率转换研究领域取得系列进展:该实验室教授史保森领导的小组在国际上首次实现了OAM单光子、OAM纠缠光子以及OAM与偏振组成的混合纠缠光子的频率上转换,证明了在频率变换过程中单光子的量子相干性
光波频率越高,能量越大,波长越短,物理是怎么解释的
因为光速是一定的,用V表示光速,f表示频率,入表示波长,则有公式如下:V=入f,因为光速恒定,f越高,则波长入越短。而光波的能量完全取决于光源发出光的瞬间所能提供出的能量,能量越大,自然频率越高,波长越短。光波具有波粒二象性(是指某物质同时具备波的特质及粒子的特质):也就是说从微观来看,由光子组成,
原子吸收一定频率光子直接电离也算跃迁吗
不严格的时候说说无妨只要不影响理解,但一般不这么说,应该就称为电离跃迁是电子(也可以理解为原子)在两个不同能级之间发生的.对于同种原子其能级差为定值.电离是说电子已脱离核的束缚,能为自由电子,对于不同的过程自由电子的能量未必相等,因此其能量和初始态的能量差就不是一个定值.因此严格来说必须区分激发和电
中国科大成功研制单光子频率上转换量子测风激光雷达
中国科学技术大学教授窦贤康课题组夏海云与中国科学院院士潘建伟课题组张强经过三年的合作,在国际上首次研制了单光子频率上转换量子测风激光雷达,实现了大气边界层气溶胶和风场的昼夜连续观测,在国际光学期刊《光学学报》(Optics Letters)和《光学快报》(Optics Express)上发表了一
比手机频率高出1000倍的宇宙辐射能量,是怎样的存在?
你听说过太赫兹吗?你能想象到比手机信号的频率高出1000倍是什么概念吗?这么高的频率波段究竟有什么用呢?2016年12月13日凌晨,国际权威科学期刊《自然》新创办的子刊《自然-天文学》(Nature Astronomy)正式上线,其创刊的首篇,发表了中国科学院紫金山天文台科学家等在南极的最新观测
原子吸收的光子能量大于或等于两个能极差就能跃迁吗
如果是原子里的一个电子吸收了这么大的能量,那么他就一定跃迁。
美国科学家设计超材料以光子形式释放能量传递信息
美国劳伦斯伯克利国家实验室和加州大学伯克利分校的科学家在《物理评论快报》杂志撰文指出,他们设计出了一种拥有自然界中没有的新奇属性的“量子超材料”, 它由光组成的人造晶体及被捕获的超冷原子构成,在很多方面与晶体类似,但结构更“完美”,没有天然材料内常见的瑕疵。 研究人员表示,他们或能精准定位此种
光子被光子散射证据首次找到
据物理学家组织网16日报道,欧洲核子中心(CERN)的ATLAS探测器中,发现了高能量下光子被光子散射的首个直接证据。这一过程极为罕见,两个光子相互作用并改变了方向,这证实了量子电动力学的最早预测之一。 ATLAS探测器项目物理协调员丹·托沃里说:“这是里程碑式的成果,是光在高能量下自身相互作
张首刚等研制出光通信波段全光纤能量时间纠缠双光子源
原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500630.shtm量子纠缠光源是量子光学系统中的重要资源,在量子信息技术发展过程中扮演着不可或缺的角色。能量-时间纠缠在长距离光纤传输时,因其频率关联特性对链路损耗和退相干效应具有天然的鲁棒性而受到越来
光电效应的概念和研究
光电效应示意图:来自左上方的光子冲撞到金属表面,将电子逐出金属表面,并且向右上方移去。 光电效应指的是,照射光束于金属表面会使其发射出电子的效应,发射出的电子称为光电子。为了产生光电效应,光频率必须超过金属物质的特征频率,称为其“极限频率”。举例而言,照射辐照度很微弱的蓝光束于钾金属表面,只要频率
拉曼位移的产生原因
当频率为ν0的单色辐射照射到物质上时,大部分入射辐射透过物质或被物质吸收,只有一小部分辐射被样品分子散射。入射的光子和物质分子相碰撞时,可发生弹性碰撞和非弹性碰撞,在弹性碰撞过程中,光子与分子之间不发生能量交换,光子只改变运动方向而不改变频率(ν0),这种散射过程叫弹性散射,亦称为瑞利散射(Rayl
HiLASE激光装置新突破:千瓦级高能频率转换器的输出能量达95-J
通过补偿高能高平均功率激光装置Bivoj/DiPOLE的热应力诱导双折射,实现了基频(1030 nm)到二次谐波频率(515 nm)的有效转换,输出能量为95 J,平均功率为950 W,且光束均匀性好。 概要 高能量、高平均功率(high-energy-high average power,
分析光谱线产生的原因
光谱线是量子系统(通常是原子,但有时是分子或原子核)和单个光子之间的相互作用的结果。 当光子具有合适的能量可以允许系统产生能量状态变化(在原子的情况下,这通常是电子变化的轨道)时,光子被吸收。 [1] 然后,它将自发地重新发射,或者以与原始频率相同的频率级联,其中发射的光子的能量的总和将等于被吸
波的空间频率,角频率,波数的定义
空间频率是指每度视角内图象或刺激图形的亮暗作正弦调制的栅条周数,单位是周/度。在简谐振动中,在单位时间内物体完成全振动的次数叫频率,用f表示。频率也表示单位时间波动传播的波长数。频率的2π倍叫角频率,即ω =2πf。在物理学里,波数是波动的一种性质,定义为每 2π 长度的波长数量(即每单位长度的波长
频率特性测试仪频率的相关简介
频率:单位时间内完成振动的次数,是描述振动物体往复运动频繁程度的量,常用符号f或v表示,单位为秒-1。为了纪念德国物理学家赫兹的贡献,人们把频率的单位命名为赫兹,简称“赫”。每个物体都有由它本身性质决定的与振幅无关的频率,叫做固有频率。频率概念不仅在力学、声学中应用,在电磁学和无线电技术中也常用
光子的特性详细叙述
光子能够在很多自然过程中产生,例如:在分子、原子或原子核从高能级向低能级跃迁时电荷被加速的过程中会辐射光子,粒子和反粒子湮灭时也会产生光子;在上述的时间反演过程中光子能够被吸收,即分子、原子或原子核从低能级向高能级跃迁,粒子和反粒子对的产生。 在真空中光子的速度为光速,能量E和动量p之间关系为
激光的原理
光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的状态(或者简单地表述为处在某一个能级上)。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光
光子的基本特性有哪些?
量子电动力学确立后,确认光子是传递电磁相互作用的媒介粒子。带电粒子通过发射或吸收光子而相互作用,正反带电粒子对可湮没转化为光子,它们也可以在电磁场中产生。 光子是光线中携带能量的粒子。一个光子能量的多少正比于光波的频率大小,频率越高,能量越高。当一个光子被原子吸收时,就有一个电子获得足够的能量
激光的产生原理
光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的状态(或者简单地表述为处在某一个能级上)。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光
不同光子能量影响甲醇在-二氧化钛表面光催化解离速率
近日,中科院大连化学物理研究所杨学明院士领导的科研团队在表面光化学反应动力学研究工作中取得新进展,研究成果Strong Photon Energy Dependence of the Photocatalytic Dissociation Rate of Methanol on TiO2
关于散射效应的解释介绍
(1)经典解释(电磁波的解释) 单色电磁波作用于比波长尺寸小的带电粒子上时,引起受迫振动,向各方向辐射同频率的电磁波。经典理论解释频率不变的一般散射可以,但对康普顿效应不能作出合理解释! (2)光子理论解释 X射线为一些e=hν的光子,与自由电子发生完全弹性碰撞,电子获得一部分能量,散射的
色彩背后的科学,远不是你想象的那么简单
这个世界给而我们最直接的印象,就是颜色。因为太熟悉,所以我们很难求想象如果这个世界没有了颜色,会是什么样子?可你有没有想过,颜色到底是从哪里来的呢? 为了回答这个问题,我们必须先了解人是怎样进行颜色感知的,以及物理上光是和人眼是怎样互动的。 颜色从哪里来 图源: Food Navigat
吸收能量,是电子吸收能量而跃迁,还是原子吸收能量
都有可能,一般来说都是外层电子跃迁,这样的跃迁一般涉及红外、可见光、紫外线这种能量较低的光子。但内层电子也可以跃迁,这涉及x射线这种能量较高的光子。原子核也能跃迁,这涉及到伽马射线这种能量很高的光子,一般只有核反应里才能遇到。
拉曼光谱发展历史和基本原理
一.拉曼光谱的发展历史1928年印度科学家拉曼实验发现单色入射光透射到物质中的散射光包含与入射光频率不同的光,即拉曼散射。拉曼因此获得诺贝尔奖。受散射光强度低的影响,拉曼光谱经历30年的应用发展限制期。直到1960年后,激光技术的兴起,拉曼光谱仪以激光作为光源,光的单色性和强度大大提高,拉曼散射信号
激光拉曼光谱仪的原理简述
激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不仅改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于
激光拉曼光谱仪结构和原理是什么
激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不仅改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于