Science揭开细胞分裂的秘密
细胞分裂是生命的基础,母细胞必须在这一过程中将DNA精确分配给两个子细胞。而染色体上的着丝粒是细胞成功分裂的关键,这个特殊的DNA区域是纺锤丝微管的附着之处,也是姐妹染色单体相互连接的地方。着丝粒出现问题会导致子细胞染色体异常,引发唐氏综合症等疾病。 微管识别着丝粒需要该区域富含一种关键的蛋白,CENP-A。宾夕法尼亚大学的研究人员在Science杂志上发表文章,阐明了着丝粒和CENP-A在细胞分裂过程中的稳定机制。 资深作者Ben E. Black副教授曾在五年前阐明了CENP-A的结构。现在他关注的问题是,细胞如何在细胞分裂时确保含CENP-A的核小体在着丝粒保持稳定。简单来说,这涉及一个辅助蛋白CENP-C。 研究人员应用一系列生物物理学技术,研究了CENP-A核小体的结构和稳定性。数据显示,这些核小体的结构非常灵活,在没有CENP-C的情况下呈现出松散构象,在存在CENP-C的时候表现为紧凑形态。而且CENP-......阅读全文
人类遗传物质中首次发现前核小体
据美国物理学家组织网8月18日报道,美国科学家在人类遗传物质中发现了一种新物质并将其命名为“前核小体”。科学家们认为,这种新物质是位于染色质和核小体之间的中间物质,新发现有望让生物教科书小小地“变脸”。相关研究发表在8月19日的《分子细胞》杂志上。 染色质是细胞周期间期细胞核内能被碱性染料染色
核小体的原理
人们接着用化学交联、高盐分离组蛋白,以及X衍射等方法进一步研究组蛋白多聚体的结构、排列以及怎样和DNA结合的,从而建立了核小体模型。1984年Klug和Butler进行了修正。核小体的构造可用图表示:每一个核小体结合的DNA总量为200bp左右,一般在150~250变化范围(micrococcal
核小体的构造
核小体的构造可用图表示:每一个核小体结合的DNA总量为200bp左右,一般在150~250变化范围(micrococcal nuclease)轻微消解染色质而得知的。连接两个核小体的连接DNA (linker DNA) 是最容易受到这种酶的作用,因此微球菌核酸酶在连接DNA处被切断,此时每个重复单位
核小体的概念
核小体是由DNA和组蛋白形成的染色质基本结构单位。每个核小体由146bp的DNA缠绕组蛋白八聚体1.75圈形成。核小体核心颗粒之间通过50bp左右的连接DNA相连。H1结合在盘绕在八聚体上的DNA双链开口处,核小体的形状类似一个扁平的碟子或一个圆柱体,此时DNA的长度压缩7倍,称染色质纤维。染色质就
染色质着丝粒区核小体组装的结构机理研究获新成果
人源HJURP与CENP-A以及组蛋白H4复合体的晶体结构 5月1日,中国科学院生物物理研究所生物大分子国家重点实验室许瑞明课题组在Genes & Development杂志上发表了题目为Structure of a CENP-A-histone H4 heterodimer in
核小体有哪些特性?
有两项关于AnuA重要评论表明这种抗体对SLE和DIL具有敏感性和特异性,并且AnuA的存在通常在SLE与肾小球肾炎患者中相联系。AnuA较抗DNA具有更高的敏感性。如果阴阳性分割点升高,能使抗核小体对狼疮更加敏感。由于核小体抗原纯化技术的改进,提高了AnuA对SLE患者的诊断特异性。研究结果表
核小体的监测方法
许多不同的技术已被用于检测AnuA,除了LE细胞试验以外,还有染色质包被的串珠乳胶凝集试验,以及免疫沉淀(用天然组织蛋白重组酸萃取的组织部分和ELISA法都已被使用。早期的研究用“脱氧核苷蛋白”作抗原研制出一种孵育在1M生理盐水中的染色质中的预备品,但未得到明确鉴定。后期报道已有更好的方法来鉴定该预
关于核小体的简介
核小体是由DNA和组蛋白形成的染色质基本结构单位。每个核小体由146bp的DNA缠绕组蛋白八聚体1.75圈形成。核小体核心颗粒之间通过50bp左右的连接DNA相连。H1结合在盘绕在八聚体上的DNA双链开口处,核小体的形状类似一个扁平的碟子或一个圆柱体,此时DNA的长度压缩7倍,称染色质纤维。染色
核小体的监测方法
许多不同的技术已被用于检测AnuA,除了LE细胞试验以外,还有染色质包被的串珠乳胶凝集试验,以及免疫沉淀(用天然组织蛋白重组酸萃取的组织部分和ELISA法都已被使用。早期的研究用“脱氧核苷蛋白”作抗原研制出一种孵育在1M生理盐水中的染色质中的预备品,但未得到明确鉴定。后期报道已有更好的方法来鉴定该预
核小体的基本特性
有两项关于AnuA重要评论表明这种抗体对SLE和DIL具有敏感性和特异性,并且AnuA的存在通常在SLE与肾小球肾炎患者中相联系。AnuA较抗DNA具有更高的敏感性。如果阴阳性分割点升高,能使抗核小体对狼疮更加敏感。由于核小体抗原纯化技术的改进,提高了AnuA对SLE患者的诊断特异性。研究结果表明,
核小体的原理简介
人们接着用化学交联、高盐分离组蛋白,以及X衍射等方法进一步研究组蛋白多聚体的结构、排列以及怎样和DNA结合的,从而建立了核小体模型。1984年Klug和Butler进行了修正。核小体的构造可用图表示:每一个核小体结合的DNA总量为200bp左右,一般在150~250变化范围(micrococca
核小体的监测方法
许多不同的技术已被用于检测AnuA,除了LE细胞试验以外,还有染色质包被的串珠乳胶凝集试验,以及免疫沉淀(用天然组织蛋白重组酸萃取的组织部分和ELISA法都已被使用。早期的研究用“脱氧核苷蛋白”作抗原研制出一种孵育在1M生理盐水中的染色质中的预备品,但未得到明确鉴定。后期报道已有更好的方法来鉴定该预
什么是核小体核心?
中文名称核小体核心英文名称nucleosome core定 义由4种组蛋白各两分子组成的八聚体结构。应用学科遗传学(一级学科),细胞遗传学(二级学科)
关于核小体的概述
核小体是染色质的基本结构单位,由DNA和H1、H2A、H2B、H3和H4等5种组蛋白(histone,H)构成。两分子的H2A、H2B、H3和H4形成一个组蛋白八聚体,约200 bp的DNA分子盘绕在组蛋白八聚体构成的核心结构外面1.75圈形成了一个核小体的核心颗粒(core particle)
核小体装配的概念
中文名称核小体装配英文名称nucleosome assembly定 义在核小体装配因子调节下,由DNA链和组蛋白组装成核小体的过程。装配先以两分子H3/H4组蛋白构成的四聚体与DNA结合,再结合上两分子H2A/H2B组蛋白构成的四聚体,形成核小体核心颗粒,再与H1组蛋白连接形成核小体。应用学科生物
Science揭开细胞分裂的秘密
细胞分裂是生命的基础,母细胞必须在这一过程中将DNA精确分配给两个子细胞。而染色体上的着丝粒是细胞成功分裂的关键,这个特殊的DNA区域是纺锤丝微管的附着之处,也是姐妹染色单体相互连接的地方。着丝粒出现问题会导致子细胞染色体异常,引发唐氏综合症等疾病。 微管识别着丝粒需要该区域富含一种关键的蛋白
核小体的临床意义
抗核小体抗体比抗dsDNA抗体、抗组蛋白抗体更早出现于系统性红斑狼疮的早期,并且特异性较高。阳性率为50-90%,特异性>98%。每个核小体单位包括200bp左右的DNA超螺旋和一个组蛋白八聚体及一个分子H1;组蛋白八聚体构成核小体的盘状核心结构;146bp的DNA分子超螺旋盘绕组蛋白八聚体1.75
核小体核心颗粒的定义
中文名称核小体核心颗粒英文名称nucleosome core particle定 义由长度为146 bp的DNA区段与各两分子的H3/H4/H2A/H2B组蛋白八聚体组成。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
细胞化学词汇核小体装配
中文名称:核小体装配英文名称:nucleosome assembly定 义:在核小体装配因子调节下,由DNA链和组蛋白组装成核小体的过程。装配先以两分子H3/H4组蛋白构成的四聚体与DNA结合,再结合上两分子H2A/H2B组蛋白构成的四聚体,形成核小体核心颗粒,再与H1组蛋白连接形成核小体。应用学
核小体的临床意义
抗核小体抗体比抗dsDNA抗体、抗组蛋白抗体更早出现于系统性红斑狼疮的早期,并且特异性较高。阳性率为50-90%,特异性>98%。每个核小体单位包括200bp左右的DNA超螺旋和一个组蛋白八聚体及一个分子H1;组蛋白八聚体构成核小体的盘状核心结构;146bp的DNA分子超螺旋盘绕组蛋白八聚体1.75
核小体的临床意义
抗核小体抗体比抗dsDNA抗体、抗组蛋白抗体更早出现于系统性红斑狼疮的早期,并且特异性较高。阳性率为50-90%,特异性>98%。每个核小体单位包括200bp左右的DNA超螺旋和一个组蛋白八聚体及一个分子H1;组蛋白八聚体构成核小体的盘状核心结构;146bp的DNA分子超螺旋盘绕组蛋白八聚体1.75
核小体的临床意义
抗核小体抗体比抗dsDNA抗体、抗组蛋白抗体更早出现于系统性红斑狼疮的早期,并且特异性较高。阳性率为50-90%,特异性>98%。每个核小体单位包括200bp左右的DNA超螺旋和一个组蛋白八聚体及一个分子H1;组蛋白八聚体构成核小体的盘状核心结构;146bp的DNA分子超螺旋盘绕组蛋白八聚体1.75
什么是核小体核心颗粒?
中文名称核小体核心颗粒英文名称nucleosome core particle定 义由长度为146 bp的DNA区段与各两分子的H3/H4/H2A/H2B组蛋白八聚体组成。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
核小体的临床意义
抗核小体抗体比抗dsDNA抗体、抗组蛋白抗体更早出现于系统性红斑狼疮的早期,并且特异性较高。阳性率为50-90%,特异性>98%。每个核小体单位包括200bp左右的DNA超螺旋和一个组蛋白八聚体及一个分子H1;组蛋白八聚体构成核小体的盘状核心结构;146bp的DNA分子超螺旋盘绕组蛋白八聚体1.75
核小体的模型形成原理
人们接着用化学交联、高盐分离组蛋白,以及X衍射等方法进一步研究组蛋白多聚体的结构、排列以及怎样和DNA结合的,从而建立了核小体模型。1984年Klug和Butler进行了修正。核小体的构造可用图表示:每一个核小体结合的DNA总量为200bp左右,一般在150~250变化范围(micrococcal
核小体的结构及功能
核小体是由DNA和组蛋白形成的染色质基本结构单位。每个核小体由146bp的DNA缠绕组蛋白八聚体1.75圈形成。核小体核心颗粒之间通过50bp左右的连接DNA相连。H1结合在盘绕在八聚体上的DNA双链开口处,核小体的形状类似一个扁平的碟子或一个圆柱体,此时DNA的长度压缩7倍,称染色质纤维。染色质就
细胞化学词汇核小体核心颗粒
中文名称:核小体核心颗粒英文名称:nucleosome core particle定 义:由长度为146 bp的DNA区段与各两分子的H3/H4/H2A/H2B组蛋白八聚体组成。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科)
核小体核心的基本概念
中文名称核小体核心英文名称nucleosome core定 义由4种组蛋白各两分子组成的八聚体结构。应用学科遗传学(一级学科),细胞遗传学(二级学科)
核小体的重要意义介绍
在80%的MRL/lprDIL小鼠中可产生核小体特异性抗体,该自身抗体产生早,先于其他抗核抗体,与肾小球肾炎有关。SLE患者多克隆核小体特异性自身抗体的抗原反应与鼠类SLE模型表现相似,核小体在SLE中作为主要自身抗原已得到证实。靶器官中免疫复合物的沉积和炎性介质(包括补体)的大量活化是引起SL
关于核小体的实验研究介绍
早在1956年为双螺旋模型提供X衍射证据的Wilkins和另一位科学家Vittorio Luzzati对染色质进行了X衍射研究,发现染色质中具有间隔为10 nm的重复性结构。蛋白质和DNA本身的结构从来不会表现出这种重复性。推测可能是组蛋白和DNA的结合方式迫使DNA折叠或缠绕成具有10 nm周