遗传发育所揭示赤霉素调控纤维素合成的分子机制
纤维素是细胞壁的主要成分,其含量与结构影响茎秆机械强度等农艺性状。纤维素的合成与组装过程复杂,受多种激素和环境因子等严格调控。赤霉素是上世纪中期“绿色革命”的关键激素,在降低株高、增强作物抗倒性方面发挥了重要作用。但对于该激素是否调控纤维素合成及相关分子机制仍知之甚少。 中国科学院遗传与发育生物学研究所基因组生物学研究中心/植物基因组学国家重点实验室周奕华研究组长期从事细胞壁生物合成机制研究。为明确赤霉素对纤维素合成的调控作用,周奕华研究组通过对水稻赤霉素相关突变体的细胞壁成分测定和基因表达分析,发现赤霉素合成缺陷导致茎秆机械组织厚壁细胞的细胞壁变薄,纤维素含量下降;而赤霉素信号转导抑制子突变和外施赤霉素均能上调纤维素合酶基因的表达,并增加纤维素含量,表明赤霉素可促进纤维素合成。分子生物学实验显示,赤霉素信号转导抑制子SLENDER RICE1(SLR1)与次生壁合成相关的顶层转录因子NAC29/NAC31直接相互作用,抑......阅读全文
Notch信号通路的通路组成介绍
Notch基因编码一种膜蛋白受体,由Notch受体、Notch配体(DSL蛋白)及细胞内效应器分子(CSL-DNA结合 蛋白)三部分组成。(1)Notch受体:分别为Notch 1.2.3.4种;其结构:胞外区(NEC)、跨膜区(TM)和胞内区(NICD/ICN)三部分;胞外区(NEC):其结构域包
Hippo信号通路概述
Hippo 信号通路,也称为Salvador / Warts / Hippo(SWH)通路,命名主要源于果蝇中的蛋白激酶Hippo(Hpo),是通路中的关键调控因子。该通路由一系列保守激酶组成,主要是通过调控细胞增殖和凋亡来控制器官大小。Hippo信号通路是一条抑制细胞生长的通路。哺乳动物中,Hip
mTOR信号通路图
mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP酶Rheb(Ras-homolog
Wnt/βcatenin信号通路
Wnt /β-catenin信号转导通路是一条在生物进化中极为保守的通路。在正常的体细胞中,β-catenin只是作为一种细胞骨架蛋白在胞膜处与E-cadherin形成复合体对维持同型细胞的黏附、防止细胞的移动发挥作用。只有当细胞外Wnt信号分子与细胞膜上特异性受体Frizzled蛋白结合激
PKC信号通路图
PKC系统,又称为磷脂肌醇信号途径。系统由三个成员组成:受体、G蛋白和效应物。Gq蛋白也是异源三体,其α亚基上具有GTP/GDP结合位点,作用方式与cAMP系统中的G蛋白完全相同。该系统的效应物是磷酸肌醇特异的磷脂酶C-β(phosphatidylinositol-specific phosph
Wnt/βcatenin信号通路
大鼠肝癌模型法 实验方法原理 1. Wnt/β-catenin信号转导通路是一条在生物进化中极为保守的通路。在正常的体细胞中,β-catenin只是作为一
信号通路的分类
一是当信号分子是胆固醇等脂质时,它们可以轻易穿过细胞膜,在细胞质内与目的受体相结合;二是当信号分子是多肽时,它们只能与细胞膜上的蛋白质等受体结合,这些受体大都是跨膜蛋白,通过构象变化,将信号从膜外domain传到膜内的domain,然后再与下一级别受体作用,通过磷酸化等修饰化激活下一级别通路。
信号通路的概念
信号通路,信号转导,signal pathway狭义能够把胞外的分子信号经过细胞膜传到细胞胞内然后发生效应的一系列酶促反应通路。基础科研中不限定从胞外到胞内,指信息从一个分子传到另外的分子的过程。信号通路本质上就是前人研究的比较透彻的一些分子,包括他的调控方式的一个总结。
Wnt/βcatenin信号通路
大鼠肝癌模型法 实验方法原理 1. Wnt/β-catenin信号转导通路是一条在生物进化中极为保守的通路。在正常的体细胞中,β-catenin只是作为一
G蛋白偶联受体信号通路激活的MAPK/Erk信号通路图
研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域
G蛋白偶联受体信号通路激活的MAPK/Erk信号通路图
研究证实,受体酪氨酸激酶、G蛋白偶联的受体和部分细胞因子受体均可激活ERK信号转导途径。如:生长因子与细胞膜上的特异受体结合,可使受体形成二聚体,二聚化的受体使其自身酪氨酸激酶被激活;受体上磷酸化的酪氨酸又与位于胞膜上的生长因子受体结合蛋白2(Grb2)的SH2结构域相结合,而Grb2的SH3结构域
信号通路的构成要素
构成信号通路的三部分原件:1. 受体(receptor)和配体(ligand)2. 蛋白激酶(kinase)3. 转录因子(transcription factors)
信号通路的构成要素
构成信号通路的三部分原件:1. 受体(receptor)和配体(ligand)2. 蛋白激酶(kinase)3. 转录因子(transcription factors)
信号通路的构成要素
构成信号通路的三部分原件:1. 受体(receptor)和配体(ligand)2. 蛋白激酶(kinase)3. 转录因子(transcription factors)
基因信号通路的分类?
一是当信号分子是胆固醇等脂质时,它们可以轻易穿过细胞膜,在细胞质内与目的受体相结合;二是当信号分子是多肽时,它们只能与细胞膜上的蛋白质等受体结合,这些受体大都是跨膜蛋白,通过构象变化,将信号从膜外domain传到膜内的domain,然后再与下一级别受体作用,通过磷酸化等修饰化激活下一级别通路。
Wnt信号通路的分类
1、典型Wnt/β-catenin信号通路(Canonical Wnt/β-catenin pathway),此通路激活核内靶基因的表达;Wnt家族分泌蛋白、Frizzled家族跨膜受体蛋白Dishevelled(Dsh)、糖原合成激酶3(GSK3)、APC、Axin、β-连环蛋白及TCF/LEF家
VEGF信号通路研究背景
血管内皮生长因子(VEGF)是一个刺激新血管生长的生长因子亚家族。血管内皮生长因子是重要的信号蛋白,参与血管生成(胚胎循环系统的从头形成)和血管生成(先存血管的血管生长)。VEGF-A是血管内皮生长因子家族的第一个成员,也包括VEGF-B、VEGF-C、VEGF-D和胎盘生长因子(PlGF)。在发现
SAPK/JNK信号通路描述
应激活化蛋白激酶 (SAPK)/Jun 氨基末端激酶 (JNK) 是 MAPK 家族的成员,可由各种不同环境应激、炎症细胞因子、生长因子以及 GPCR 激动剂激活。应激反应信号经 Rho 家族(Rac、Rho、cdc42)的小分子 GTP 酶传递到这个级联。和其他 MAPK 一样,膜近端激酶是一个
Hippo信号通路和疾病
a. Hippo信号通路和癌症癌症是涉及异常细胞生长,可能侵入或蔓延到其他多个身体部位的疾病。虽然第一次发现Hippo通路是因为它可以通过促进细胞凋亡及抑制细胞周期来控制成像椎间盘生长,但是目前在动物模型中的研究已经将该通路的功能扩展到了其他癌症,如乳头状肾癌,结直肠癌,卵巢癌,乳腺癌和胃癌。 Ca
信号通路的构成要素
构成信号通路的三部分原件:1. 受体(receptor)和配体(ligand)2. 蛋白激酶(kinase)3. 转录因子(transcription factors)
AKT信号通路研究背景
Akt通路或PI3K-Akt通路参与基本的细胞过程,包括蛋白质合成、增殖和存活。AKT也在血管生成和代谢中发挥调节作用。AKT途径被诱导PI3K的因子激活,PI3K反过来激活mTOR途径。AKT信号通路在许多细胞生存途径中起着重要的调节作用,主要是作为凋亡抑制剂。AKT信号转导与多种癌症有关,是抗癌
常见信号通路介绍
1. NF-κB信号NF-kB(nuclear factor-kappa B)是1986年从B淋巴细胞的细胞核抽提物中找到的转录因子,它能与免疫球蛋白kappa轻链基因的增强子B序列GGGACTTTCC特异性结合,促进κ轻链基因表达,故而得名。它是真核细胞转录因子Rel家族成员之一,广泛存在于各种哺
Jak/Stat信号通路图
JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。信号传递过程如下:细胞因子与相应的
EGFR信号通路研究背景
EGF(表皮生长因子)是EGF蛋白质家族的创始成员,该家族还包括双调蛋白(AREG)、β-乙酰球蛋白(BTC)、表调节素(EPR)、HB-EGF、神经调节蛋白等。表皮生长因子家族成员具有高度相似的结构和功能特征。它们至少有一个共同的结构基序,即EGF结构域,由六个保守的半胱氨酸残基组成,形成三个二硫
什么是基因信号通路?
信号通路是指当细胞里要发生某种反应时,信号从细胞外到细胞内传递了一种信息,细胞要根据这种信息来做出反应的现象。信号通路(signal pathway)的提出最早可以追溯到1972年,不过那时被称为信号转换(signal transmission)。1980年,M. Rodbell在一篇综述中提到信号
Jak/Stat信号通路图
JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。信号传递过程如下:细胞因子与相应的
TNF信号通路研究背景
肿瘤坏死因子(TNF)超家族的细胞因子激活细胞存活、死亡和分化的信号通路。肿瘤坏死因子超家族成员通过配体介导的三聚体作用,导致多个细胞内适配器的募集,以激活多种信号转导途径。含有Fas相关死亡结构域(FADD)和TNFR相关死亡结构域(TRADD)等适配器的死亡结构域(DD)的募集可导致诱导细胞凋亡
AMPK信号通路研究背景
AMPK信号通路是一种燃料传感器和调节器,促进各种组织中ATP的产生并抑制ATP的消耗途径。AMPK是一种异三聚体复合物,由催化α亚单位和调节β和γ亚单位组成。该激酶在应对耗尽细胞ATP供应的应激时被激活,如低血糖、缺氧、缺血和热休克。AMP与γ亚单位的结合变构激活复合物,使其成为其主要上游AMPK
Notch信号通路活化途径
Ⅰ:经典的Notch信号通路又称为CBF-1/RBP-Jκ依赖途径(1) Notch信号传导在活化过程中经3次裂解:第1个裂解点(S1,胞外区1654位精氨酸残基-1655位替氨醢残基之间)于Notch成熟过程中在高尔基内furin样转化酶(furin-like convertase)的作用下发生裂
常见信号通路总结
1. NF-κB signaling pathwayNF-κB 通路作用机制当处于激活状态时,NF-κB 位于细胞质中且与抑制蛋白 IκBα 形成复合体。通过内在膜受体的介导,一些胞外信号物质可激活一种称为 IκB 激酶(IKK)的酶。IKK 转而磷酸化 IκBα 蛋白,这将导致后者的泛素化,使得