Antpedia LOGO WIKI资讯

IHI公司发表:用于生物燃料的微生物藻类在户外培育成功

IHI(1),神户大学,千岁研究院共同对外发表,生物燃料专用微生物藻类(Botryococcus)在户外大规模培育成功。 三所单位都是依NEDO(新能源成业技术综合开发机构)关于”战略次生代生物能源利用技术开发项目“的委托,于2012年开始的对高速繁殖型Botryococcus藻类进行研究开发。 高速繁殖型Botryococcus,是用于代替石油等炭化水素油生产,其繁殖能力很高。另外,为了适应生产化降低生产成本而成功培育出增大藻体径和提高水面上浮性能的新品种藻类。2013年获得在100平方米范围的户外稳定培养的技术。 这次,在鹿儿岛的鹿儿岛市的七岛上,在户外1500平方米的培养池实验设备中,未添加任何糖类养料,仅靠光合作用使藻体繁殖成功。1500平方米规模培育成功,表明了在生产应用化方面的重大进步。现在,该研究课题为了获得常年培育稳定的藻体量技术,实验还在继续中。 另外,为了达到降低制造燃料成本而进行的所有工序(藻体......阅读全文

生物产业发展“十一五”规划答问

近日,国务院办公厅转发了发展改革委《生物产业发展“十一五”规划》(国办发[2007]23号,以下简称《规划》)。这是我国第一次将生物产业作为国民经济和社会发展的一个重要战略产业进行整体规划部署。为便于公众更好地理解《规划》的有关内容和精神,国家发展改革委副主任张晓强接受了有关媒体的采访。 &nb

两种微生物“相互合作;生物燃料产量或将提高

研究人员通过将大肠杆菌和里氏木霉配对,从而把玉米秸秆、叶子等农业废弃物转化为生物燃料。(自美国广播公司)   美国密歇根大学的研究人员日前在《美国科学院院报》发布文章称,他们发明出一种生产高品质生物燃料的方法,通过将大肠杆菌和里氏木霉配对,从而把玉米秸秆、叶子等农业废弃物转化为生物燃料。这是目前为

美国能源部投入4000万美金 聚焦微生物与成像工具

  美国能源部18日宣布,将提供4000万美元资金推动生物能源研究,重点资助一批微生物研究及成像工具开发项目,以确保美国在生物能源产业的领先优势。  能源部长里克·佩里称,未来几年,生物技术和生物基生产方法的革命有望改变工业的面貌,资助这些项目有助于确保美国在该领域的技术优势,让美国更有把握抓住新兴

秸秆变废为宝 科研助力美丽中国

  我国是农业大国,农林废弃秸秆非常多,秸秆的种类随季节变化而变化,量大、低值、体积大、不便运输,而其自然降解的过程又极其缓慢,因此很容易导致以堆积、荒烧的形式直接倾入环境,造成极大的环境污染和资源浪费。近年来,农业机械化收割的普及,让留在地里的秸秆茬更高也更多了。尤其到夏收、秋收时节,秸秆的集中燃

2014年世界能源环保科技发展回顾

  美 国  新型电池研究获得突破;证明惯性约束核聚变反应释放能量比燃料吸收的多。  佐治亚理工学院开发出一种直接以生物质为原料的低温燃料电池,借助太阳能或废热即能将稻草、锯末和藻类甚至有机肥料转化为电能,能量密度比基于纤维素的微生物燃料电池高近百倍。加州大学河滨分校开发出一种主要原料是普通沙子的新

8月14日《自然》杂志精选

关于纤维素生物燃料潜在原料基因组的研究现状 生物燃料的第一个浪潮对世界能源市场产生了很大影响。然而,生物燃料对粮食价格可能会产生间接影响,人们对此很关心。基于这个原因,人们对用微生物、草本、木材及作物残渣等纤维素类原材料生产更为“绿色”的生物燃料的这种生物质来源的兴趣日增,因为这种方式不与粮食生产

石元春:生物质能源不能再坐“冷板凳”

  在保护环境和实现可持续发展的战略目标之下,发展新能源已成社会各界共识。业内专家表示,生物质能源是具有优秀发展前景的新能源,但目前在研发和投入方面均存在不足。在全球加强新能源布局的大背景下,中国必须加大政策扶持和经济支持力度,让生物质能源不再坐“冷板凳”。  在近日在京召开的中国生物质(

我科学家系统阐述微生物生理功能新观点

  近十年来,代谢工程技术已被广泛应用于微生物菌种改造,并取得了巨大成功。但是,代谢工程技术在提高微生物在工业环境下的适应能力和胁迫抗性方面的作用还很有限。新型大宗生物产品——生物燃料、生物基化学品和生物材料的特点是量大、价廉。为了利用微生物高效、经济地生产这些产品,急需发展新的菌株改造技术。  

医院检验科离心机的消毒及气溶胶防控

气溶胶(aerosol)由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,又称气体分散体系。其分散相为固体或液体小质点,其大小为0.001~0.1微米,分散介质为气体。天空中的云、雾、尘埃,工业上和运输业上用的锅炉和各种发动机里未燃尽的燃料所形成的烟,采矿、采石场磨材和粮食加工时所形成的固

英国科学家指明未来25大环境威胁 纳米技术居首

据美国《新科学家》杂志报道,以英国剑桥大学动物学家威廉•萨瑟兰为主的30名科学家列举了未来25大环境威胁,值得关注。其中最危险的隐患包括:人造生命和生物模拟仿生机器人,它们可能成为未来新的入侵物种,影响生态系统;对生物燃料和食物需求的增加,可能造成动物栖息地减少;气候变迁、海平面上升、火灾和极端天气

微生物或可推动未来生物燃料新突破

  美国杜兰大学的分子生物学教授大卫?穆林(David Mullin)一直专注于开发具有经济效益的生物燃料,最近他又就微生物分解植物细胞的能力及将其转化为生物燃料的可能性开展研究。  穆林通过收集分析反刍动物的粪便,已经从一种非洲斑马的排泄物中提取到了TU-103细菌,该细菌可以在废棉花、

《大气化学和物理学》:生物燃料或增温室气体排放

一项新的研究表明,生物燃料的生产可能会增加温室气体的排放。该研究的第一作者、诺贝尔奖获得者Paul Crutzen和来自欧美的同事认为,生产生物燃料作物所需的氮肥可能导致比人们此前所认为的更大数量的一氧化二氮排放到大气中。 根据这项研究,微生物把化肥中的3%到5%的氮转化成了一氧化二氮,而

产气肠杆菌的主要应用!

  产气肠杆菌的主要应用!   2020-07-10作者:百欧博伟浏览次数:172 来源:北京百欧博伟生物技术有限公司   产气肠杆菌的主要应用!   一、背景   微生物由于繁殖速度快,对恶劣环境适应能力强,且易产生大量降解相关酶等优 点使微生物处理技术受到研究者们的青睐,而筛选出具有

大连化物所生物质能源研究取得新进展

  近日,中科院大连化学物理研究所赵宗保研究员领导的生物质高效转化研究组(1816组)在生物质能源研究中,首次实现葡萄糖和木糖同步利用生产油脂。这一重要研究成果于近日正式发表在Biotechnology for Biofuels(Hu et al., Biotechnology fo

成都生物所微生物燃料电池产电机制研究取得新进展

   微生物燃料电池产电机制  微生物燃料电池(Microbial fuel cell, MFC)是一种以产电微生物为阳极催化剂将有机物中的化学能直接转化为电能的装置,在废水处理和新能源开发领域具有广阔的应用前景。虽然目前已发现很多产电微生物,如希瓦氏菌、地杆菌、克雷伯氏杆菌等,但这些

五部委发布137项优先发展高技术产业领域指南(2011年度)

  发改委网站2011年10月20日刊文,由发改委、科技部、工信部、商务部、知识产权局联合研究审议的 《当前优先发展的高技术产业化重点领域指南(2011年度)》,现予以发布。《指南》确定了当前优先发展的信息、生物、航空航天、新材料、先进能源、现代农业、先进制造、节能环保和资源综合利用、海洋、高技

2014合成生物学国际会议日程公布

  一、会议内容安排   报到日期:2014年10月25日,下午2:00-8:00pm   报到地点:贵州大厦   会议日期:2014年10月26-27日   会议地点:北京化工大学会议中心   住宿地点:北京化工大学招待所   樱花宾馆   如家快捷酒店   贵

美开发生物质燃料低温电池 可将稻草转为电能

  据物理学家组织网2月19日报道,美国科学家开发出一种直接以生物质为原料的低温燃料电池。这种燃料电池只需借助太阳能或废热就能将稻草、锯末、藻类甚至有机肥料转化为电能,能量密度比基于纤维素的微生物燃料电池高出近100倍。相关论文已发表在《自然》杂志子刊《自然通讯》上。   尽管以甲醇或氢驱动的低温

研究开发出生物质燃料低温电池

  据报道,美国科学家开发出一种直接以生物质为原料的低温燃料电池。这种燃料电池只需借助太阳能或废热就能将稻草、锯末、藻类甚至有机肥料转化为电能,能量密度比基于纤维素的微生物燃料电池高出近100倍。相关论文已发表在《自然》杂志子刊《自然通讯》上。   尽管以甲醇或氢驱动的低温燃料电池技术得到长足发展

生产氢气变容易 阳光+废水足够了

  美国加利福尼亚大学研究小组设计出一个装置能够仅靠阳光和废水来产生氢气,这不仅是获得可再生能源的新途径,还提高了废水治理的效率。   这种混合装置结合微生物燃料电池(MFC)和一种被称为光电化学电池(PEC)的太阳能电池。在生物燃料电池组件中,废水中的细菌降解出有机物,产生电能。这个过程中产生的

人造生命: 超越自然还是带来毁灭?

  人类是否能够扮演上帝的角色创造生命?在科学家眼中,细胞就是一套积木,将基因“积木”和蛋白质“积木”重新洗牌组合,也许就能创造出生命体——具有新功能的新型细胞,比如能够产生新型材料的细胞或是能够清理原油泄漏污染的细菌。   组装生命   在波士顿海洋工业园区——拥有40年历史的加州的“硅谷”—

梁禹翔:让微生物燃料电池性能翻倍

  你能想象这发生在一个25岁小伙子身上吗?就读于浙江工商大学环境科学与工程学院的研究生梁禹翔,巧妙地借助太阳光辅助提升微生物燃料电池的输出性能,开发出了目前国际上该领域输出功率最高、稳定性最好的光电微生物燃料电池,相关成果在国际顶级期刊连发9篇学术论文,授权了6项国家发明专利,为该技术的工程化应用

合成生物学研究有助于发展先进生物燃料

  合成生物学的一个重要目标是,以可持续方式,利用简单、廉价、可再生的原始材料,生产有价值的化学产品。类似于JBEI研发的计算机辅助模型和仿真是合成生物学实现目标的基本条件之一。但迄今为止,这种生物学工具仍然受到局限。   美国能源部联合生物研究所(JBEI)的研究人员日前宣布,在计算机辅助设计R

《自然通讯》:直接利用生物质发电的新型混合燃料电池

   报道:虽然以甲醇或氢为发电原料的低温燃料电池已经得到充分的研究,但由于聚合物材料缺乏有效的催化剂体系,现有的低温燃料电池技术并不能直接利用生物质(biomass)作为燃料。   目前,美国乔治亚理工学院的研究人员开发出一种新型低温燃料电池,借助于太阳能或热能激活的催化剂,能够直接将生物质

“十二五”科技发展规划

  目 录   一、形势与需求   二、总体思路、发展目标和战略部署   (一)总体思路   (二)发展目标   (三)战略部署   三、加快实施国家科技重大专项   四、大力培育和发展战略性新兴产业   五、推进重点领域核心关键技术突破   (一)加强农业农村科技

华裔学者Science组合技术获研究突破

  来自美国生物再生能源国家实验室,生物科学与化学研究中心的研究人员将不同的显微成像方法结合起来,深入解析了生物质(biomass)细胞壁和酶消化能力之间的关联,获得了一项重要的研究突破,这一突破将有助于优化糖生产,以及降低生物燃料的成本。相关成果公布在Science杂志上。   文章的第一作者和

“闵恩泽能源化工奖”评选结果公示:杰出贡献奖4名

  中国科学院院士、中国工程院院士、2007年度国家最高科学技术奖获得者闵恩泽先生是我国德高望重的著名科学家,也是中国石油石化科技界的泰斗、炼油催化应用科学的奠基者、绿色化学的开拓者。为培养年轻一代科学与创新精神,促进我国生物质能源、生物基化工与材料等能源化工领域的基础研究、应用研究和产业化开发,闵

1月3日《自然》杂志精选

封面故事: 磁单极理论上有可能存在 我们都熟悉携带负电荷或正电荷(如电子和质子)的基本粒子,但还没有存在只带一个净磁荷的基本粒子的证据。磁铁似乎总是有不能分开的北极和南极,没有已知的磁单极,尽管人们都在努力观测它们。现在,一项有趣的理论研究提出,磁单极是可能存在的——不是以基本粒子的形式

《自然》:新技术加速细菌进化

  将加快对微生物的改造:从开发新的治疗药物到生产海量生物燃料   一个基因组的特定区域的目标遗传变化使得研究人员能够迅速进化微生物。(图片提供:H. Wang等/《自然》)   脱氧核糖核酸(DNA)测序技术的改进正使得读取基因组变得更加快捷和廉价。然而在微生物和其他有机体中改良基因,却依

葡萄牙将建造全新智能低碳城市

  据英国《新科学家》网站近日报道,一座全新的智能低碳生态城市普兰尼特谷(PlanIT Valley)将于2015年在葡萄牙北部耸立。打造生态城的灵感源自人的组织系统,整个城市将像人一样拥有“大脑”、“神经”、“眼睛”、“肺”、“胃”和“肾脏”。   大脑:中央处理器   现在的城市简直就是妖怪