JCB:抗癌基因p53的新作用
细胞为了成功地分裂,染色体就必须排成行,才进入它们的新细胞,就像打开一个剧院帷幕。它们要完成这一壮举,在某种程度上要得益于称为中心粒的结构,为幕布绳索提供一个锚点。最近,约翰霍普金斯大学的研究人员发现,没有中心粒,大部分细胞就不会分裂,并且他们发现了其中的原因:一种称为p53的蛋白质,由于其他原因可阻止细胞分裂,同时也监控着中心粒的数目,以防止可能灾难性的细胞分裂。 这项研究结果于七月六日在国际知名学术期刊《Journal of Cell Biology》在线发表。这一新的信息,加上中心粒操纵的新工具,可以帮助研究人员弄清“p53如何帮助保护细胞,以及当它这样做时如何会导致癌症”。延伸阅读:P53抑癌蛋白如何与基因组结合的新见解。 约翰霍普金斯大学医学院分子生物学和遗传学助理教授Andrew Holland说:“p53已知可监测许多事情,如DNA损伤以及染色体的错误数目,这都对细胞造成了分裂危险。我们这项研究发现了它监测......阅读全文
中心粒与细胞分裂的相关内容
在细胞分裂间期的S期,两个相互垂直的中心粒已自身复制形成两对中心体。在细胞分裂前期,两对中心体分别向细胞两极移动,当中有凝胶化的纺锤丝相连。到中期时,成对的中心粒(中心体)移到细胞两极,当中的纺锤丝形成纺锤体。到了分裂后期、末期,纺锤丝、纺锤体逐渐不鲜明,已在细胞两极的中心体也随细胞的分裂分配到
关于细胞器—中心体的中心粒与细胞分裂介绍
在细胞分裂间期的S期,两个相互垂直的中心粒已自身复制形成两对中心体。在细胞分裂前期,两对中心体分别向细胞两极移动,当中有凝胶化的纺锤丝相连。到中期时,成对的中心粒(中心体)移到细胞两极,当中的纺锤丝形成纺锤体。到了分裂后期、末期,纺锤丝、纺锤体逐渐不鲜明,已在细胞两极的中心体也随细胞的分裂分配到
Developmental-Cell:细胞分裂过程中心粒或扮演关键角色
有丝分裂是染色体所编码的遗传信息平均分配给两个子代细胞的过程,其是地球上所有生命的基本特征,近日,Developmental Cell的一篇研究报告中,来自维也纳大学等机构的科学家们通过研究分析了中心粒促进细胞有丝分裂过程的分子机制,相关研究或能帮助阐明有丝分裂过程中这些微小细胞结构的功能。图片
细胞分裂素的研究历史
这种物质的发现是从激动素的发现开始的。由韧皮部向下或双向运输。1955年美国人F.斯库格等在烟草髓部组织培养中偶然发现培养基中加入从变质鲱鱼精子提取的DNA,可促进烟草愈伤组织强烈生长。后证明其中含有一种能诱导细胞分裂的成分,称为激动素。第一个天然细胞分裂素是1964年D.S.莱瑟姆等从未成熟的玉米
细胞分裂素的研究历史
1913年德国植物学家 G.Haberlandt 从马铃薯韧皮部渗出液中分离物质可诱导马铃薯细胞分裂和愈伤组织的生成。1940年Folke Skoog从椰奶和酵母抽出液中分离出一些可促进细胞分裂的嘌呤类的化学物质。1942年,J·van·奥弗贝克等在培养曼陀罗幼胚和未受精的卵细胞的实验中,发现椰子乳
细胞分裂素的研究历史
1913年德国植物学家 G.Haberlandt 从马铃薯韧皮部渗出液中分离物质可诱导马铃薯细胞分裂和愈伤组织的生成。1940年Folke Skoog从椰奶和酵母抽出液中分离出一些可促进细胞分裂的嘌呤类的化学物质。1942年,J·van·奥弗贝克等在培养曼陀罗幼胚和未受精的卵细胞的实验中,发现椰子乳
JCB:抗癌基因p53的新作用
细胞为了成功地分裂,染色体就必须排成行,才进入它们的新细胞,就像打开一个剧院帷幕。它们要完成这一壮举,在某种程度上要得益于称为中心粒的结构,为幕布绳索提供一个锚点。最近,约翰霍普金斯大学的研究人员发现,没有中心粒,大部分细胞就不会分裂,并且他们发现了其中的原因:一种称为p53的蛋白质,由于其他原
日本研究小组宣称:检测脑血流可以用来判断多动症
细胞为了成功地分裂,染色体就必须排成行,才进入它们的新细胞,就像打开一个剧院帷幕。它们要完成这一壮举,在某种程度上要得益于称为中心粒的结构,为幕布绳索提供一个锚点。最近,约翰霍普金斯大学的研究人员发现,没有中心粒,大部分细胞就不会分裂,并且他们发现了其中的原因:一种称为p53的蛋白质,由于其他原
细胞分裂素-的发现与研究
这种物质的发现是从激动素的发现开始的。由韧皮部向下或双向运输。1955年美国人F.斯库格等在烟草髓部组织培养中偶然发现培养基中加入从变质鲱鱼精子提取的DNA,可促进烟草愈伤组织强烈生长。后证明其中含有一种能诱导细胞分裂的成分,称为激动素。第一个天然细胞分裂素是1964年D.S.莱瑟姆等从未成熟的玉米
细胞分裂研究带来癌症新靶标
最近,结构生物学家在一项研究中表明,细胞分裂过程中一个明显关键的步骤,取决于特定蛋白质之间的一种独特的相互作用,包括一个与癌症密切相关的蛋白质。现在他们希望,这种相互作用的新特性,将使其成为探索癌症新疗法的一个靶标。相关研究结果发表在8月30日的《eLife》杂志。 细胞分裂或有丝分裂,是高中
细胞分裂的分裂种类
原核细胞还了解不多,只对少数细菌的分裂有些具体认识。原核细胞既无核膜,也无核仁,只有由环状DNA分子构成核区,又称拟核,具有类似细胞核的功能。拟核的DNA分子或者连在质膜上,或者连在质膜内陷形成的质膜体上,质膜体又称间体。随着DNA的复制间体也复制成两个。以后,两个间体由于其间的质膜的生长而逐渐离开
细胞分裂的分裂种类
原核细胞还了解不多,只对少数细菌的分裂有些具体认识。原核细胞既无核膜,也无核仁,只有由环状DNA分子构成核区,又称拟核,具有类似细胞核的功能。拟核的DNA分子或者连在质膜上,或者连在质膜内陷形成的质膜体上,质膜体又称间体。随着DNA的复制间体也复制成两个。以后,两个间体由于其间的质膜的生长而逐渐离开
细胞分裂的分裂作用
原核细胞还了解不多,只对少数细菌的分裂有些具体认识。原核细胞既无核膜,也无核仁,只有由环状DNA分子构成核区,又称拟核,具有类似细胞核的功能。拟核的DNA分子或者连在质膜上,或者连在质膜内陷形成的质膜体上,质膜体又称间体。随着DNA的复制间体也复制成两个。以后,两个间体由于其间的质膜的生长而逐渐离开
Nature:开发出一种能靶向杀灭快速分裂的癌细胞
近日,一项刊登在国际杂志Nature上的研究报告中,来自约翰霍普金斯大学医学院等机构的科学家们通过研究发现了一种新方法,其或能通过选择性地攻击细胞分裂机器的核心来杀灭某些不断繁殖的人类乳腺癌细胞,这种截止目前仅在实验室培养和患者机体自身衍生的细胞中进行检测的技术未来或有望帮助研究人员开发新型药物
“改变教科书”发现-胚胎首次细胞分裂研究
长期以来,科学家认为在哺乳动物胚胎的首次细胞分裂过程中,只有一个纺锤体负责将胚胎染色体分配到两个细胞中。但欧洲研究人员利用小鼠开展的最新实验观察发现,这个过程中实际上有两个纺锤体,分别负责来自父亲和母亲的染色体。 欧洲分子生物学实验室研究人员在新一期美国《科学》杂志上说,最新发现意味着在胚胎首
研究发现人类细胞分裂的新形式
12月17日于旧金山召开的美国细胞生物学协会年会上,美国威斯康辛大学卡邦癌症中心发现了一种人类细胞分裂的新形式,并称之为“核分裂”(klerokinesis)。这种新分裂形式是一种对错误细胞分裂的天然补救机制,能预防某些细胞步入“癌”途。 正常细胞分裂每次都是一个母细胞变成两个子细胞。细胞先按
细胞分裂素的发现与研究历史
这种物质的发现是从激动素的发现开始的。由韧皮部向下或双向运输。1955年美国人F.斯库格等在烟草髓部组织培养中偶然发现培养基中加入从变质鲱鱼精子提取的DNA,可促进烟草愈伤组织强烈生长。后证明其中含有一种能诱导细胞分裂的成分,称为激动素。第一个天然细胞分裂素是1964年D.S.莱瑟姆等从未成熟的玉米
细胞分裂素与植物的细胞分裂
细胞分裂素与植物的细胞分裂密切有关,研究发现在拟南芥的主根中,细胞分裂素并不直接影响根分生组织区中的细胞分裂,而是主要通过控制拟南芥主根分生组织区的细胞分化速度,来影响分生组织区的大小。外源添加细胞分裂素,可以在不影响细胞分裂的情况下使主根的分生组织区变小;而部分参与细胞分裂素合成或信号转导途径的基
《Cell》:不对称的遗传
对于许多种类的细胞,初级纤毛起着导体和天线的作用。在感光细胞中纤毛已演变为易扩张的、充满色素的光子筛,而在嗅细胞中它则转而负责接触有气味的物质。过去纤毛一度被认为是捕获的内共生体,现在人们则相信它很大程度上是真核生物的创造物,而非原核生物捕获和兼并所产生。运动纤毛与细菌鞭毛相似,但却显示出几个重
北京大学Cell子刊发表新研究成果
来自北京大学生命科学学院的研究人员在新研究中证实,LRRC45作为一个中心体连接体组件在维持中心体连接中起至关重要的作用。这一研究发现发表在9月12日的《Cell Reports》杂志上。 北京大学生命科学学院的陈建国(Jianguo Chen)教授和滕俊琳(Junlin Teng
简述中心粒的基本功能
动物细胞中心粒主要有以下几方面的功能: (1)中心粒是微管的组织中心,中心粒的自发活动,可以使细胞质内存在的微管蛋白亚单位有条理地聚合起来,形成微管结构。 (2)中心粒与纺锤体的形成也有密切的关系,中心粒也是纺锤体微管的组织中心.如在一些生长快速的间期细胞中,在中心粒的周围可以看见有许多辐射
动物细胞中心粒的主要功能
动物细胞中心粒主要有以下几方面的功能:(1)中心粒是微管的组织中心,中心粒的自发活动,可以使细胞质内存在的微管蛋白亚单位有条理地聚合起来,形成微管结构。(2)中心粒与纺锤体的形成也有密切的关系,中心粒也是纺锤体微管的组织中心.如在一些生长快速的间期细胞中,在中心粒的周围可以看见有许多辐射状排列的微管
生化与细胞所揭开多纤毛细胞的中心粒扩增之谜
11月18日,国际学术期刊《自然细胞生物学》(Nature Cell Biology)在线发表了中科院上海生科院生物化学与细胞生物学所朱学良研究组的研究论文The Cep63 paralog Deup1 enables massive de novo centriole biogenes
单细胞ICPMS联合HCS为您揭秘顺铂化疗耐药机制
顺铂(Cisplatin)是1978年经FDA批准用于临床治疗癌症的化疗药物。顺铂药物的治疗机制是通过结合形成Pt-DNA复合物,干扰DNA复制合成,从而杀死快速增殖的癌细胞,属于细胞周期非特异性药物。许多癌症患者最初对基于铂类的治疗比较敏感,但一段时间后,患者通常对顺铂治疗表现出耐药性,导致了癌症
基因组所国际合作项目揭示中心粒卫星重组新机制
10月11日,中科院北京基因组研究所疾病基因组与个体化医疗实验室“百人计划”研究员杨运桂研究组Jannie Danielsen博士,与哥本哈根大学Niels Mailand教授合作完成的“中心粒卫星重组的细胞应激反应机制研究”取得重要进展,相关论文在欧洲分子生物学学会杂志The EMBO
单细胞ICPMS联合HCS揭秘化疗耐药机制
1. 单细胞水平顺铂摄入研究[1] 细胞内顺铂的摄入与肿瘤负荷相关,也就是说肿瘤对顺铂反应降低会导致细胞内顺铂的含量降低。所以,分析单个细胞水平对顺铂的摄入和分布对于评估治疗的有效性具有非常重要的意义。过多顺铂进入细胞内会增加DNA 损伤和细胞死亡的频率。了解单个细胞水平及细胞亚群对顺铂的摄入的机制
颠覆性发现:中心粒也携带遗传信息?
瑞士洛桑联邦理工学院(EPFL)的研究团队发现,中心粒可以携带信息在细胞中跨世代传递。这一惊人的发现说明,除基因之外线粒体也可能携带遗传信息。 中心粒是细胞内由多个蛋白组成的桶状结构,受到了科学家们的广泛研究。中心粒蛋白发生突变会引起一系列疾病,包括发育异常、呼吸疾病、男性不育和癌症。EPFL
程祝宽研究组PlantCell揭秘细胞分裂
来自中科院遗传与发育生物学研究所,云南农业大学的研究人员利用图位克隆的方法,在水稻中克隆了植物中首个Bub1同源基因BRK1(Bub1- related kinase1),为解析细胞分裂过程中纺锤体组装提出了新观点,相关研究结果发表在12月15日在Plant Cell杂志上。 领导这一
研究揭示气孔保卫细胞分裂精细调控机制
气孔是分布在所有陆地植物叶片表面的特化表皮细胞结构。气孔保卫细胞根据环境条件变化和节律发生“运动”改变气孔大小,调控植物与外界的气体交换和水分蒸发,直接影响了光合作用碳同化和水分利用效率。模式植物拟南芥FOUR Lips (FLP) 是最早被发现的气孔发育关键基因之一。FLP基因突变可导致保卫细
概述细胞分裂素的历史研究
1913年德国植物学家 G.Haberlandt 从马铃薯韧皮部渗出液中分离物质可诱导马铃薯细胞分裂和愈伤组织的生成。 1940年Folke Skoog从椰奶和酵母抽出液中分离出一些可促进细胞分裂的嘌呤类的化学物质。 1942年,J·van·奥弗贝克等在培养曼陀罗幼胚和未受精的卵细胞的实验中