科学家创建“乐高”新技术,实现细胞叠加重构人器官

2013年开始,借助诱导多潜能干细胞(iPSC)、CRISPR/Cas9等新技术,培育类器官在生物医学领域成为新宠。这些类器官不仅仅能够作为研究人体器官结构的模型,还可以用于药物的临床试验。但是,这项体外器官构成技术目前还停留在实验室水平,且培育出的微型器官仅仅具有部分功能。 类器官的出现,让科学家提出“复杂的人体器官”的进一步预想。这样的复杂模型能够取代在人身体上进行直接试验,规避副作用等风险。但是,构建复杂器官面临着很大困难:构建器官组织时,不同类型的细胞无法精确定位,通信细胞无法正确与其他细胞相连。 近期,科学家找到通过DNA片段选择性叠加细胞的方法,打破细胞排列紊乱的僵局。相关研究成果于8月31日发表于《Nature Methods》期刊。 细胞“贴上”DNA片段,实现细胞与细胞的正确组合 人体器官包含了多种类型的细胞。例如乳腺组织,它由血管细胞、脂肪细胞、纤维细胞、白细胞等组成。为了正确排列这些类型的细胞,......阅读全文

类器官(organoids):器官芯片技术培育人胰岛类器官

  近日,中国科学院大连化学物理研究所研究员秦建华团队利用器官芯片技术培育人多能干细胞衍生的胰岛类器官取得新进展,相关成果发表在器官芯片领域刊物Lab on a chip上,并被选为封面文章。  类器官(organoids)是一种通过干细胞自组织方式形成的多细胞三维复杂结构,它能够在体外模拟具有来源

类器官技术简介

类器官技术 是一种新兴的、具有巨大潜力的生物技术。它是指在体外利用干细胞或特定组织的细胞,通过特定的培养条件和生物材料的支持,诱导其形成具有三维结构和一定功能的类似于体内器官的细胞聚集体。类器官技术的关键步骤包括:细胞获取:通常从胚胎干细胞、诱导多能干细胞或成体组织中的干细胞分离得到起始细胞。培养体

类器官技术简介

类器官技术是一种利用细胞培养技术构建人工器官的方法。它通过将不同类型的细胞种植在三维支架上,使其形成类似于真实器官的结构和功能。类器官通常来源于干细胞(多能干细胞、胎儿或成人来源的),也可以由组织衍生细胞培养而成,这些细胞包括正常干细胞/祖细胞、分化细胞和癌细胞等。其组成类器官的细胞可衍生自诱导多能

类器官技术步骤

类器官技术是一种在体外培养环境中构建具有三维结构和部分功能的微型器官样组织的方法。它具有以下几个关键步骤:细胞获取:通常从胚胎干细胞、诱导多能干细胞或成体干细胞中获取起始细胞。培养体系建立:使用特定的培养基和添加物,为细胞提供适宜的生长环境。诱导分化:通过添加特定的生长因子、化学物质或物理信号,引导

类器官技术与其他器官培养技术有什么区别?

类器官技术与其他器官培养技术主要有以下一些区别:细胞来源和复杂性类器官:通常来源于干细胞(如多能干细胞、成体干细胞)或原代组织细胞,能够自我组织和分化,形成具有一定器官特征的结构,但细胞类型相对有限。传统器官培养:可能使用多种细胞类型,包括不同分化阶段的细胞,但细胞的自我组织和分化能力可能较弱。组织

细胞培养技术在类器官芯片中的应用

细胞培养技术在类器官芯片中具有关键的应用,包括以下几个方面:细胞来源选择与获取:确定适合构建类器官芯片的细胞类型,如干细胞(胚胎干细胞、诱导多能干细胞)、原代细胞等,并通过适当的方法获取这些细胞。细胞扩增:在将细胞接种到类器官芯片之前,需要对细胞进行体外扩增,以获得足够数量的细胞。细胞分化诱导:通过

器官芯片技术未来可期

持续跳动的“心脏”、有代谢功能的“肝脏”、会呼吸的“肺”……在巴掌大小的芯片上,先“盖”出模拟人体环境的“房子”,再向其中引入相关细胞,就能部分模拟人体器官功能。器官芯片与微生理系统是当前生命科学领域最具发展潜力的新兴方向之一。它融合了多个学科,可在体外模拟人体器官微环境,形成一种仿生的微生理系统,

类器官技术的应用

发育生物学研究:帮助了解器官的发育过程和机制。疾病病理学研究:例如肿瘤类器官可以保持起源组织的基因组、转录组、形态学和功能特征,有助于研究疾病的发生发展机制。精准医疗:基于患者自身的肿瘤类器官进行药物反应测试,为个性化治疗方案的确定提供依据。药物筛选和药效试验:能更好地了解真实器官对药物的反应,筛选

器官培养的技术方法

器官培养是将活体的一部分进行分离培养,是广义的组织培养形式之一。将部分或整体器官在不损伤正常组织结构的条件下进行的培养,即仍保持组织的三维结构,并模仿在各种状态下的器官功能。

从类器官、细胞到真菌,生物计算技术多元“绽放”

尽管人工智能(AI)领域已经取得了显著突破,展现出了前所未有的智能水平,但它们仍然依赖于20世纪50年代奠定计算基础的硅基硬件。假如人们能够摆脱传统束缚,创造出由生物材料构成的计算机,那将会是怎样的一番景象?面对AI领域数据存储与耗能激增的双重挑战,一些来自学术界和商业界的研究人员未雨绸缪,将目光投

从类器官、细胞到真菌,生物计算技术多元“绽放”

  尽管人工智能(AI)领域已经取得了显著突破,展现出了前所未有的智能水平,但它们仍然依赖于20世纪50年代奠定计算基础的硅基硬件。假如人们能够摆脱传统束缚,创造出由生物材料构成的计算机,那将会是怎样的一番景象?  面对AI领域数据存储与耗能激增的双重挑战,一些来自学术界和商业界的研究人员未雨绸缪,

干细胞遇新技术“如虎添翼”,生产器官只需短短几天!

  最近,英国Wellcome Trust Sanger研究所科学家和他们在剑桥大学的合作者创造了一种全新技术来控制干细胞分化。这种技术可以在短短几天之内将屈指可数的干细胞变成数百万个功能细胞,极大地简化人脑和人肌肉细胞生产流程。  该研究对应的文章发表于最新上线的Stem Cell Reports

综述推荐|-多维单细胞技术解析器官发育与维持

  近年来,依靠表观遗传组学、转录组学、细胞谱系示踪和高通量mRNA分子原位分析等技术在单细胞分辨率上的突破,研究人员对脊椎动物器官发育与维持过程中细胞与分子机制的解析取得了一系列重大进展【1-3】。目前,运用各种先进的单细胞分析技术,研究人员可以从细胞图谱绘制(cell atlas profili

细胞免疫与器官移植

  器官移植在同卵双胞胎之间进行较易成功,这是因为两者的基因组是一样的,细胞表面的MHC分子也是一样的,2个个体都不排斥对方的器官。  激素、放射线照射、药物(6-巯基嘌呤)等可以抑制受体的免疫功能,增加移植手术的成功率。但它同时增加了感染疾病的可能性。虽然环孢素(cyclosporin)选择性抑制

细胞免疫与器官移植

  器官移植在同卵双胞胎之间进行较易成功,这是因为两者的基因组是一样的,细胞表面的MHC分子也是一样的,2个个体都不排斥对方的器官。  激素、放射线照射、药物(6-巯基嘌呤)等可以抑制受体的免疫功能,增加移植手术的成功率。但它同时增加了感染疾病的可能性。虽然环孢素(cyclosporin)选择性抑制

类器官培养的技术挑战

培养过程复杂,需要精确控制培养条件和使用特定的生物材料。类器官的成熟度和复杂性仍有限,与真实器官存在一定差距。长期培养的稳定性和可重复性有待提高。

类器官培养技术的优点

能够更好地模拟体内器官的生理和病理状态,有助于研究器官发育、疾病发生机制等。可用于药物筛选和测试,能更准确地预测药物在人体内的效果和毒性。为再生医学提供了潜在的细胞来源和组织构建的基础。

类器官技术应用的挑战

类器官技术在应用中面临着一系列挑战:类器官的复杂性和保真度:尽管类器官能模拟器官的某些特征,但它们往往不能完全重现体内器官的所有细胞类型、细胞间的复杂相互作用以及完整的生理功能。例如,大脑类器官中的神经元连接和神经网络的形成仍远远不如真实大脑那样复杂和精细。血管化和免疫微环境:大多数类器官缺乏血管系

类器官的技术局限

复杂性不足:不能完全重现体内器官的所有细胞类型和细胞间的复杂相互作用。长期稳定性:在长期培养中可能会出现变化,影响其可靠性。

类器官技术的应用介绍

类器官技术在多个领域都有应用潜力,包括但不限于:发育生物学:帮助研究器官的发育过程和机制。疾病病理学:用于疾病建模,更好地理解疾病的发生和发展机制。精准医疗:基于患者肿瘤的药物反应测试,为个性化治疗提供方案。药物毒性和药效试验:能模拟人体器官对药物的反应,筛选有效药物,减少动物实验,提升药物研发效率

花器官培养的技术方法

中文名称花器官培养英文名称flower culture定  义将植物的花序、花及其组成部分从母体植株上切下,放在无菌的人工条件下使其生长发育形成植株的技术。应用学科细胞生物学(一级学科),细胞培养与细胞工程(二级学科)

类器官培养技术的步骤

细胞获取:可以从胚胎、成体组织或诱导多能干细胞(iPSCs)等获取起始细胞。培养环境搭建:准备含有特定营养成分、生长因子和细胞外基质的培养基。三维培养:将细胞接种在合适的支架或基质上,如基质胶,以促进细胞的三维生长和自我组织。培养与维持:在合适的条件下(如温度、湿度、气体环境等)进行培养,并定期更换

类器官技术在模拟器官功能方面有哪些不足

类器官虽然在一定程度上模拟了器官的特征,但仍存在明显的局限性。当前的类器官模型往往只能模拟器官的部分功能和结构,难以完全还原真实器官的复杂性。比如,真实器官中的多细胞类型丰富且相互作用复杂,形成了精细的三维结构,而类器官中的细胞类型相对较少,三维结构也不够完善。以肝脏类器官为例,它可能无法完全重现肝

肠道类器官培养技术和-3D-细胞培养技术有什么区别?

肠道类器官培养技术和 3D 细胞培养技术有以下一些区别:细胞组成和结构复杂性:肠道类器官:包含多种肠道细胞类型,如上皮细胞、干细胞、内分泌细胞等,并能形成类似于肠道的隐窝-绒毛结构,具有一定的空间组织和细胞极性。3D 细胞培养:可以是单一细胞类型或多种细胞的简单组合,其结构复杂度通常较类器官低,不一

类器官芯片技术和传统-2D-细胞培养技术有什么区别?

类器官芯片技术和传统 2D 细胞培养技术主要有以下区别:细胞生长环境类器官芯片:能够更好地模拟体内细胞的三维生长环境,包括细胞外基质、细胞间相互作用、化学梯度和物理刺激等。2D 细胞培养:细胞在平面上生长,缺乏细胞间和细胞与基质间的复杂相互作用,以及三维空间中的营养和氧气梯度。细胞形态和功能类器官芯

类器官培养的起始细胞来源

类器官培养的起始细胞群一般从成人或胎儿组织活检样本中获得,肿瘤组织也可类似处理以分离肿瘤细胞来培养类器官。此外,从外周血、腹水和胸腔积液等液体样本中分离的肿瘤细胞也可作为起始材料。对于肿瘤衍生类器官,需要解决癌细胞和正常细胞共存的问题,可利用培养条件,通过使用选择性培养基来实现。

类器官技术的步骤及特点

类器官技术是一种新兴的生物技术,它是在体外利用干细胞或祖细胞培养出具有三维结构和部分功能的微型器官类似物。  这项技术的主要步骤包括: 1. 细胞获取:通常从患者的组织样本中分离出干细胞或祖细胞。 2. 培养环境搭建:提供适宜的培养基,包含各种生长因子、细胞外基质成分等。 3. 诱导分化:通过特定的

类器官技术的表征和应用

类器官技术是一种利用细胞培养技术构建人工器官的方法。它通过将不同类型的细胞种植在三维支架上,使其形成类似于真实器官的结构和功能。类器官通常来源于干细胞(包括诱导多能干细胞、胎儿或成人干细胞),也可以由组织衍生细胞(包括正常干细胞/祖细胞、分化细胞和癌细胞)培养而成。其培养过程涉及多种因素,例如:细胞

类器官技术的局限性

类器官技术目前存在一些应用局限性,包括:培养成本较高:体外培养类器官需要各种生长因子和激素,以及特殊的生长环境,这使得培养价格相对昂贵。缺乏完整的肿瘤微环境:动物的肿瘤实验可以提供与人类体内相同的肿瘤微环境,如淋巴细胞、血管和各种基质细胞等,但体外培养的类器官通常只包含肿瘤细胞,缺少这些肿瘤微环境的

类器官技术的发展前景

类器官技术近年来发展迅速,呈现出以下几个主要的趋势和特点:  **技术创新**: 1. 培养方法不断改进,提高了类器官的生成效率和质量。例如,新的生物材料和支架的应用,改善了细胞的生长环境和组织形态。 2. 基因编辑技术与类器官培养相结合,能够精准地改造类器官的基因,更深入地研究基因功能和疾病机