豆科植物共生固氮过程中调控侵染线形成的新成员
10月30日,PLoS Genetics 杂志发表了中国科学院上海生命科学研究院植物生理生态研究所谢芳研究组题为SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation 的研究论文。该工作揭示了豆科植物共生固氮过程中,宿主植物调控微丝骨架重排,从而起始调控侵染线的形成。 氮素是植物生长发育的重要营养元素,目前农作物主要通过施用工业氮肥获取氮源。随着世界人口的增长,人们对粮食作物的需求与日俱增,而大量施用工业氮肥,不仅耗费了大量的能源,同时也造成了对环境的污染。豆科植物与根瘤菌之间的共生固氮是植物获取氮素最为有效且经济的形式。研究豆科植物共生固氮的分子机理,不仅有助于理解共生固氮这种生命现象的本质,也为探索非豆科植物共生固氮的潜能提供理论基础。 谢芳研究组致力于共生固氮过程中根瘤......阅读全文
Chem封面:电池?固氮?
氮气,作为地球大气层中含量最高的气体,可谓取之不尽用之不竭。但是,氮气分子中两个氮原子之间的N≡N三键十分强大,键能高达946 kJ/mol,在正常条件下相当稳定。因此将空气中的游离氮转化为化合态氮的固氮过程,对于化学工业来说很不容易。目前最成功的利用氮气和氢气制造氨的哈伯法(Haber-Bös
固氮的主要分类
人工固氮人工固氮长期以来,人们期望着农田中粮食作物能像豆科植物一样有固氮能力,以减少对 化肥的依赖。70年代首先实现了细菌之间的固氮 ... 主要在合成氨中实现人工固氮(工业上通常用H2和N2 在催化剂、高温、高压下合成氨,化学方程式:N2 + 3H2=(高温高压催化剂)2NH3)。 所有的含氮化学
什么是人工固氮
固氮分子氮经自然界的固氮生物(如各种固氮菌)固氮酶的催化而转化成氨的过程。是氮循环的重要阶段1、人工固氮 工业上通常用H2和N2 在催化剂、高温、高压下合成氨 化学方程式:N2 + 3H2=(高温高压催化剂)2NH3 最近,两位希腊化学家,位于Thessaloniki的阿里斯多德大学的G
概述根瘤菌的共生过程
当豆科植物在幼苗期,土壤中的根瘤菌便被其根毛分泌的有机物吸引而聚集在根毛的周围,并大量繁殖。同时产生一定的分泌物,这些分泌物刺激根毛,使其先端卷曲和膨胀,同时,在根菌瘤分泌的纤维素酶的作用下,根毛细胞壁发生内陷溶解,随即根瘤菌由此侵入根毛。 在根毛内,根瘤菌分裂滋生,聚集成带,外面被一层粘液所包
科学家发现玉米的核心细菌微生物组具有固氮能力
与人类微生物组类似,植物微生物组被称为植物的第二个基因组,对植物生长发育、养分吸收、病虫害抵御等至关重要。 近日,科学家发现了定殖于玉米茎木质部伤流液内具有固氮能力且高度保守的核心细菌微生物组,它们为玉米提供了氮素营养并促进根系生长。相关研究成果由中国农科院农业资源与农业区划研究所(以下简称资划所
在绿肥产业中纳入根瘤菌研究
紫云英照片(左图为未接种高效菌剂对照植株,右图为接种高效菌剂植株) 张俊杰摄近年来,农业中不断使用化肥造成了许多问题,很多专家建议采用可再生能源和可持续能源的耕作方法。这些方法包括有机和动物肥、农家肥、堆肥和绿肥等,其中绿肥应用最为广泛。绿肥是指直接或经堆沤后施入土壤作为肥料使用的栽培或野生绿
玉米“肠道菌群”:未开发的生物固氮资源
玉米伤流液采集 中国农科院供图 与人类微生物组类似,植物微生物组被称为植物的第二个基因组,对植物生长发育、养分吸收、病虫害抵御等至关重要。 近日,科学家发现了定殖于玉米茎木质部伤流液内、具有固氮能力且高度保守的核心细菌微生物组,它们为玉米提供了氮素营养并促进根系生长。相关
共生细菌的简介
各种生物都是有细菌的,但分有害菌和无害菌,有害菌可以使身体不适,要消灭它。可是无害菌不会给身体带来不适而且还有益,可以和被寄生的生物共生的细菌称为共生细菌。 在人的身体内,住着数以万亿计的细菌和其他微生物。它们寄生在人们的皮肤、生殖器、口腔,特别是肠道等部位。实际上,人体细胞并不是人体内数量最
分子植物卓越中心揭示根瘤共生信号转导的机制
7月2日,Current Biology在线发表了中国科学院分子植物科学卓越创新中心王二涛课题组发表的题为Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation的
噬菌体侵染细菌实验
原理:噬菌体T2有一个蛋白质的外壳,DNA裹在其中。当噬菌体T2感染大肠杆菌时,它的尾部吸附在菌体上。然后,菌体内形成大量噬菌体,菌体裂解后,释放出几十个乃至几百个与原来感染细菌一样的噬菌体T2。材料:大肠杆菌,LB培养基,恒温箱,T2噬菌体过程:第一阶段(感染阶段 ) 噬菌体侵染寄主细胞的第一步是
噬菌体侵染细菌实验
这种说法有点偏颇。1、当噬菌体的DNA用32磷标记后,它吸附到大肠杆菌表面,然后把DNA注入到大肠杆菌里面,利用其中的原料复制子代的DNA。离心后,较轻的噬菌体悬浮在上清液中,大肠杆菌及一些较重的颗粒沉淀在底部,由于噬菌体中含有32磷的DNA都注入到大肠杆菌里面,所以上清液放射性很低,底部的沉淀物放
噬菌体的侵染过程
一个典型的噬菌体的侵染细菌的过程,可以分为三个阶段:感染阶段、增殖阶段和成熟阶段。感染阶段:噬菌体侵染寄主细胞的第一步是“吸附”,即噬菌体的尾部附着在细菌的细胞壁上,然后进行“侵入”。噬菌体先通过溶菌酶的作用在细菌的细胞壁上打开一个缺口,尾鞘像肌动球蛋白的作用一样收缩,露出尾轴,伸入细胞壁内,如同注
植物固氮成本不菲
含羞草树 图片来源:Olivier Vandeginste/Science Source 当谈到获取最重要的营养素时,有些植物会招募一些“小朋友”:生活在其根部隆起处、从空气中获取氮的土壤细菌。一项新研究表明,维持这些搭档的成本很高,以至于一些物种放弃了这些微生物园丁。 来自10个植物家族的
植物固氮成本不菲
当谈到获取最重要的营养素时,有些植物会招募一些“小朋友”:生活在其根部隆起处、从空气中获取氮的土壤细菌。一项新研究表明,维持这些搭档的成本很高,以至于一些物种放弃了这些微生物园丁。来自10个植物家族的物种,包括花生、豆类和含羞草树,都能够在贫瘠的土壤中茁壮成长,因为它们与所谓的固氮细菌结合在一起。但
植物固氮成本不菲
含羞草树 图片来源:Olivier Vandeginste/Science Source 当谈到获取最重要的营养素时,有些植物会招募一些“小朋友”:生活在其根部隆起处、从空气中获取氮的土壤细菌。一项新研究表明,维持这些搭档的成本很高,以至于一些物种放弃了这些微生物园丁。 来自10个植物
固氮酶结构介绍
Fe蛋白Fe蛋白由 nifH基因编码 。对多种生物固氮酶铁蛋白的一级结构的测定结果表明 , Fe蛋白都不含色氨酸 ,酸性氨基酸的含量均高于碱性氨基酸 ,各属种间的同源性为 45% ~ 90%,说明铁蛋白的基本结构较为保守 。Fe蛋白是两个相同的亚基组成的 γ2型二聚体 。二聚体的分子量约为 59 ~
豆科植物根瘤固氮能力-与转录因子NLP家族有关
生物固氮作为潜在的新型氮肥来源,对于农业可持续发展具有重要意义。在豆科植物生物固氮中,豆血红蛋白的含量和组分直接影响根瘤内固氮酶的活性,发挥关键作用。中国科学院分子植物科学卓越创新中心杰里米·戴尔·默里研究组及合作团队首次发现转录因子NLP家族调控根瘤中豆血红蛋白基因表达的分子机制。10月底,相
豆科植物固氮“氧气悖论”破解
根瘤被称为豆科植物的“固氮工厂”,反映豆科植物与固氮根瘤菌的共生关系。豆血红蛋白(又称共生血红蛋白)存在其中,是根瘤中调节氧气浓度的“开关”,氧气是豆科植物和根瘤菌呼吸必需的,但根瘤菌中的固氮酶更喜欢低氧环境,“氧气悖论”就产生了。这一悖论始终悬而未决,也就是说,迄今为止有关根瘤内豆血红蛋白基因表达
豆科植物生物固氮“氧气悖论”破解了
根瘤被称为豆科植物的“固氮工厂”,反映豆科植物与固氮根瘤菌的共生关系。豆血红蛋白(又称共生血红蛋白)存在其中,是根瘤中调节氧气浓度的“开关”,氧气是豆科植物和根瘤菌呼吸所必需的,但根瘤菌中的固氮酶更喜欢低氧环境,“氧气悖论”就产生了。这一悖论始终悬而未决,也就是说迄今为止有关根瘤内豆血红蛋白基因表达
豆科植物固氮“氧气悖论”破解
根瘤被称为豆科植物的“固氮工厂”,反映豆科植物与固氮根瘤菌的共生关系。豆血红蛋白(又称共生血红蛋白)存在其中,是根瘤中调节氧气浓度的“开关”,氧气是豆科植物和根瘤菌呼吸必需的,但根瘤菌中的固氮酶更喜欢低氧环境,“氧气悖论”就产生了。这一悖论始终悬而未决,也就是说,迄今为止有关根瘤内豆血红蛋白基因表达
豆科植物生物固氮“氧气悖论”破解了
根瘤被称为豆科植物的“固氮工厂”,反映豆科植物与固氮根瘤菌的共生关系。豆血红蛋白(又称共生血红蛋白)存在其中,是根瘤中调节氧气浓度的“开关”,氧气是豆科植物和根瘤菌呼吸所必需的,但根瘤菌中的固氮酶更喜欢低氧环境,“氧气悖论”就产生了。这一悖论始终悬而未决,也就是说迄今为止有关根瘤内豆血红蛋白基因表达
科学家首次评估单细胞固氮蓝藻的全球固氮通量
厦门大学教授史大林团队基于在西北太平洋副热带流涡区开展的高分辨率观测,定量分析了固氮生物群落的丰度、结构和固氮速率,进而应用广义加性模型刻画的优势固氮蓝藻的生态位特征预测了其在全球海洋的主要分布格局,首次系统性地评估了单细胞固氮蓝藻UCYN-B的全球固氮通量,揭示了其对海洋固氮的重要贡献。日前,
科学家首次评估单细胞固氮蓝藻的全球固氮通量
厦门大学教授史大林团队基于在西北太平洋副热带流涡区开展的高分辨率观测,定量分析了固氮生物群落的丰度、结构和固氮速率,进而应用广义加性模型刻画的优势固氮蓝藻的生态位特征预测了其在全球海洋的主要分布格局,首次系统性地评估了单细胞固氮蓝藻UCYN-B的全球固氮通量,揭示了其对海洋固氮的重要贡献。日前,相关
关于氮循环的氮的相关介绍
氮(N)是天然湿地生态系统中最重要的组成成分和一种重要的生态影响因子,其主要来源有径流输入、大气沉降和生物固氮。天然湿地中N的迁移和转化主要发生在湿地演替带,演替带是生物地球化学活动比较强烈的缓冲区,常被视为湿地的N源、N汇和N转化器。演替带中N衰减主要是通过反硝化、厌氧氨氧化和湿地植被吸收等方
关于根瘤菌的主要用途介绍
虽然空气成分中约有80%的氮,但一般植物无法直接利用,花生、大豆、苜蓿等豆科植物,通过与根瘤菌的共生固氮作用,才可以把空气中的分子态氮转变为植物可以利用的氨态氮。在种子发芽生根后,根瘤菌从根毛入侵根部,在一定条件下,形成具有固氮能力的根瘤,在固氮酶的作用下,根瘤中的类菌体将分子态氮转化为氨态氮,
生物固氮的环境响应机制获揭示
中国科学院华南植物园生态中心鼎湖山站生态系统管理研究组副研究员郑棉海(课题组PI:莫江明研究员)首次系统地揭示了全球陆地生态系统生物固氮对环境变化的响应格局。相关研究近日发表于《全球变化生物学》。 生物固氮是地球生态系统重要的氮素来源之一,也是驱动陆地生态系统氮循环和净初级生产力的关键因素。
Science发现了不同寻常的共生
科学家们在微型单细胞藻类和高度专业化细菌之间发现了一种前所未有的共生关系。这种共生关系在海洋生态系统中起着重要的作用。相关研究成果发表在9月21日出版的Science杂志上,解析了一个具有大幅减少基因组的神秘固氮微生物。 这种微生物最早是1998年,由加州大学的海洋科学教授 Jonathan Ze
水稻中稳定表达嵌合受体-显著提高识别能力
丛枝菌根是陆生植物与丛枝菌根真菌之间形成的一种互利互惠的共生,帮助植物高效从土壤中获取磷、氮等营养,同时宿主植物主要以脂肪酸的形式把碳源传递给菌根真菌,向生态系统输入碳源(Science, 2017; Molecular Plant, 2017; The Plant Cell, 2014)。共
花生新技术开辟粮油量质提升新途径
“用了ARC微生物菌剂后能明显减轻死苗、烂果,还能明显提高花生的品相,花生果变得又多、又白、又饱满,预计每亩增收200到300多元不成问题。”9月13日,在河南正阳县召开的花生提质固氮减损增产ARC耦合技术千亩连片应用现场观摩与交流研讨会上,种植大户黄磊说。 会上,以中国工程院院士张新友为组长
氮添加对生物固氮的负效应随土壤有机碳的增加而减弱
传统观点认为,由于生物固氮是一个消耗能量的化学反应,当土壤可利用氮浓度增加时,兼性固氮者下调固氮速率(转而利用土壤氮),而专性固氮者被淘汰或取代。基于这样的认识形成的“氮富集抑制生物固氮”理论观点已被广泛接受和证实。然而,自然界中仍存在与此相悖的现象,即有很多富氮的生态系统高效固持外源氮。导致该“悖