Antpedia LOGO WIKI资讯

关于氮循环的氮的相关介绍

氮(N)是天然湿地生态系统中最重要的组成成分和一种重要的生态影响因子,其主要来源有径流输入、大气沉降和生物固氮。天然湿地中N的迁移和转化主要发生在湿地演替带,演替带是生物地球化学活动比较强烈的缓冲区,常被视为湿地的N源、N汇和N转化器。演替带中N衰减主要是通过反硝化、厌氧氨氧化和湿地植被吸收等方式进行。 [2] 空气中含有大约78%的氮气,占有绝大部分的氮元素。氮是许多生物过程的基本元素;它存在于所有组成蛋白质的氨基酸中,是构成诸如DNA等的核酸的四种基本元素之一。在植物中,大量的氮素被用于制造可进行光合作用供植物生长的叶绿素分子加工,或者固定,是将气态的游离态氮转变为可被有机体吸收的化合态氮的必经过程。一部分氮素由闪电所固定,同时绝大部分的氮素被非共生或共生的固氮细菌所固定。这些细菌拥有可促进氮气氢化成为氨的固氮酶,生成的氨再被这种细菌通过一系列的转化以形成自身组织的一部分。某一些固氮细菌,例如根瘤菌,寄生在豆科植物(例......阅读全文

关于氮循环的氮的相关介绍

  氮(N)是天然湿地生态系统中最重要的组成成分和一种重要的生态影响因子,其主要来源有径流输入、大气沉降和生物固氮。天然湿地中N的迁移和转化主要发生在湿地演替带,演替带是生物地球化学活动比较强烈的缓冲区,常被视为湿地的N源、N汇和N转化器。演替带中N衰减主要是通过反硝化、厌氧氨氧化和湿地植被吸收等方

关于氮循环的定义介绍

  氮循环是指氮在自然界中的循环转化过程,是生物圈内基本的物质循环之一,如大气中的氮经微生物等作用而进入土壤,为动植物所利用,最终又在微生物的参与下返回大气中,如此反复循环,以至无穷。  构成陆地生态系统氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。  植物吸收

关于氮循环的氮气转化的介绍

  有三种将游离态的N2(大气中的氮气)转化为化合态氮的方法:  生物固氮:是指固氮微生物将大气中的氮气转换成氨的过程 [1] ,一些共生细菌(主要与豆科植物共生)和一些非共生细菌能进行固氮作用并以有机氮的形式吸收。  工业固氮:在哈伯-博施法中,N2与氢气被化合生成氨(NH3)肥。  化石燃料燃烧

关于氮循环的基本信息介绍

  氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。  氮循环是全球生物地球化学循环的重要组成部分,全球每年通过人类活动新增的“活性”氮导致全球氮循环严重失衡,并引起水体的富营养化、水体酸化、温室气体排放等一系列环境问题。

关于氮族元素氮气的相关介绍

  1、物理性质  氮气是无色无臭的气体,熔点是63 K,沸点是77 K,临界温度是126 K,难于液化。溶解度很小,常压下在283 K 时一体积水可溶解0.02体积的氮气。  2、制备  工业上通过分馏液态空气制得氮气。实验室里用加热氯化铵饱和溶液和固体亚硝酸钠的混合物的方法制备氮气。  3、化学

氮循环的概念

氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。氮循环是全球生物地球化学循环的重要组成部分,全球每年通过人类活动新增的“活性”氮导致全球氮循环严重失衡,并引起水体的富营养化、水体酸化、温室气体排放等一系列环境问题。

关于自动凯氏定氮仪的相关介绍

  ★具有自动添加稀释液;加碱;加硼酸。蒸馏功率可调,保证高、低浓度样品蒸馏的回收率,并智能增加停顿时间。  ★显示方式:高分辨率160*128液晶显示屏,人机对话。  ★整体 仪器外壳采用ABS工程塑料,避免被硫酸腐蚀。  ★冷却水水流、水压的自动检测,遇水流断流,仪器报警,和屏幕提示,并保留当前

关于凯氏定氮法的计算相关介绍

  X =((V1-V2)*N*0.014)/( m*(10/100)) *F*100%  X:样品中蛋白质的百分含量,g;  V1:样品消耗硫酸或盐酸标准液的体积,ml;  V2:试剂空白消耗硫酸或盐酸标准溶液的体积,ml;  N:硫酸或盐酸标准溶液的当量浓度;  0.014:1N硫酸或盐酸标准溶

关于氮测定法的常量法的相关介绍

  取供试品适量(约相当于含氮量25~30mg),精密称定,供试品如为固体或半固体,可用滤纸称取,并连同滤纸置干燥的500ml凯氏烧瓶中;然后依次加入硫酸钾(或无水硫酸钠)10g和硫酸铜粉末0.5g, 再沿瓶壁缓缓加硫酸20ml;在凯氏烧瓶口放一小漏斗并使烧瓶成45°斜置,用直火缓缓加热,使溶液的温

氮循环的硝化作用介绍

  产生的氨,一部分被微生物固持及植物吸收,或者被粘土矿物质固定;另一部分通过自养硝化或异养硝化转变成硝酸盐,这一过程被称为硝化作用。  氨来源于腐生生物对死亡动植物器官的分解,被用作制造铵离子(NH4+)。在富含氧气的土壤中,这些离子将会首先被亚硝化细菌转化为亚硝酸根离子(NO2-),然后被硝化细