Antpedia LOGO WIKI资讯

Nature、Science关注:与众不同的玫瑰花

每朵玫瑰皆有刺——但种植在瑞典一家实验室中的玫瑰还有晶体管及电极。来自瑞典林雪平大学的研究人员通过整合植物相容性电子材料构建出了一些仿生玫瑰花。其中一种改造玫瑰茎中贯穿着简单的数字电路:另一种玫瑰在施加电压时叶子会改变颜色(延伸阅读:一水解酶对玫瑰花香形成至关重要 有助培育更香玫瑰 )。 这些科学家们希望为生物学家生成一些记录或调控植物生理学的工具——这一植物相当于电子起搏器一类的医疗植入体。该研究的领导者、林雪平大学材料科 学家Magnus Berggren说,电子元件也可能成为在不改变DNA的情况下操控植物的一种途径。这项研究发布在《Science Advances》杂志上。Nature和Science网站均对这一突破性的成果进行了热点新闻报道。 一些材料学家表示,他们喜欢Berggren的创造力,但却不知道如何完成这些实验。斯坦福大学的鲍哲楠(henan Bao)说:“这看起来很酷,但我却不知道其意味着什么。但我猜......阅读全文

玫瑰花环试验

实验原理动物T淋巴细胞表面具有结合异种动物红细胞的受体,称为E受体,在体外一定条件下,能与绵羊等动物的红细胞结合,形成以T细胞为中心,红细胞环绕在周围,宛似一朵玫瑰花样的花环,故取名为E玫瑰花环试验(erythrocyte rosettes assay)或自然花环形成试验。凡能与RBC形成E花环

玫瑰花环试验

实验概要本实验介绍了玫瑰花环试验的原理、方法和注意事项等,玫瑰花环试验是目前鉴定和计算外周血液和各种淋巴样组织中T淋巴细胞的最常用方法之一。实验原理动物T淋巴细胞表面具有结合异种动物红细胞的受体,称为E受体,在体外一定条件下,能与绵羊等动物的红细胞结合,形成以T细胞为中心,红细胞环绕在周围,宛似一朵

玫瑰花环试验

实验概要本实验介绍了玫瑰花环试验的原理、方法和注意事项等,玫瑰花环试验是目前鉴定和计算外周血液和各种淋巴样组织中T淋巴细胞的最常用方法之一。实验原理动物T淋巴细胞表面具有结合异种动物红细胞的受体,称为E受体,在体外一定条件下,能与绵羊等动物的红细胞结合,形成以T细胞为中心,红细胞环绕在周围,宛似一朵

植物膜转运的模型预测、实验验证及生理学影响

图注:上图:玉米根部O2流的振荡变化作为O2利用情况的指标。A:不同氧气浓度下O2流的振荡规律;B:O2流振荡对外界氧气的依赖性。关键词:适应(Adaptation);离子流(Ion flux);膜(Membrane)参考文献:Shabala S et al. . J. Exp. Bot. .200

EY混合玫瑰花环试验

实验概要T淋巴细胞膜上具有异种动物红细胞的受体,可与绵羊等动物的红细胞(E)结合形成花环;B淋巴细胞膜上具有补体C3b受体,可与补体C3b致敏的酵母菌细胞(Y)形成花环;D细胞膜上具有以上两种受体,故可同时与动物红细胞、补体C3b致敏的酵母细胞形成混合花环;N细胞无以上两种受体,不形成花环。此试验可

EY混合玫瑰花环试验

实验概要T淋巴细胞膜上具有异种动物红细胞的受体,可与绵羊等动物的红细胞(E)结合形成花环;B淋巴细胞膜上具有补体C3b受体,可与补体C3b致敏的酵母菌细胞(Y)形成花环;D细胞膜上具有以上两种受体,故可同时与动物红细胞、补体C3b致敏的酵母细胞形成混合花环;N细胞无以上两种受体,不形成花环。此试验可

玫瑰花茉莉花冷冻干燥机,玫瑰花冻干技术

  玫瑰花和茉莉花作为经济作物,其花朵主要用于食品及提炼香精玫瑰油,玫瑰油应用于化妆品、食品、精细化工等工业。还可以当中药材使用,茉莉花性温,味辛、甘,有理气开郁、和中下气的功效玫瑰花性微温,味甘、微苦,能舒肝解郁含有多种氨基酸、维生素,还富含钙、铁、钾、锌等矿物质。玫瑰花、茉莉花具有芳香气味和鲜艳

选择性微电极在植物生理学研究中的应用(五)

7  展望选择性微电极技术能用于直接并灵敏地观察植物体对矿质元素的需求,研究者可利用选择性微电极技术进行对植物某种离子或高或低的吸收的品种的筛选,还可制定出与植物需求相适应的环境的营养水平;能及时准确地探测到的光、温、水涝、盐分引起的植物体离子或分子信息的微小变化,能成为预测植物受到逆境胁迫最直观、

选择性微电极在植物生理学研究中的应用(四)

5   在植物逆境生理研究中的应用随着选择性微电极技术的日益成熟,近年来,许多学者开始用选择性微电极探讨植物适应逆境的离子或分子流的瞬间变化(我们称之为原初响应机制)。Shabala(2000)考察了蚕豆叶片叶肉细胞在盐胁迫和渗透胁迫下离子流的响应机制,观察到90mM NaCl会导致K+出现明显的外

选择性微电极在植物生理学研究中的应用(二)

1.1  依据Fick定律推导离子移动速率  离子选择性微电极在待测离子浓度梯度中对已知的两点的距离(dx)进行测定,分别获得电压V1和V2(图2)。两点间的浓度差(dc)从V1、V2及已知的该电极的电压/浓度校正曲线计算就可以获得。D是离子或分子特异的扩散系数(单位:cm-2s-1),将它们代入F