心理所用功能磁共振成像技术探索重大损失决策神经机制

重大损失决策中大脑的神经活动 以往的研究一直认为,解决抉择冲突是以“冰冷无情”的数学计算为基础,“两利相权取其重,两害相权取其轻”是规范性决策理论的一大基本原则。然而,在现实生活中,人们的决策特别是涉及生存威胁的决策,常常会引发人们的情感,这种情感不仅会阻碍或促进人的决策行为,甚至会夺走人的生命!现实生活中涉及生存威胁的决策是情绪负载的,传统决策理论单纯用数学计算公式解决决策冲突是无法真实地描述人们的避害决策。 电影《唐山大地震》讲述了一个二择一的重大损失决策,元妮的女儿方登和儿子方达被同一块楼板压在两边,绝境下,两个孩子只能救一个,无论救哪一个,都意味着要放弃另一个。元妮无奈选择了牺牲女儿救儿子,这个决定使得这位母亲在震后32年里一直陷入痛苦之中无法自拔。由于传统决策理论无法解释重大损失抉择中引发的情感,致使理解重大损失决策的潜在机制仍然成为心理学研究中的一个非常基础而又极度困难的问题,特别从进化的角度看,......阅读全文

心理所用功能磁共振成像技术探索重大损失决策神经机制

重大损失决策中大脑的神经活动  以往的研究一直认为,解决抉择冲突是以“冰冷无情”的数学计算为基础,“两利相权取其重,两害相权取其轻”是规范性决策理论的一大基本原则。然而,在现实生活中,人们的决策特别是涉及生存威胁的决策,常常会引发人们的情感,这种情感不仅会阻碍或促进人的决策行为,甚至

基于功能性磁共振成像研究视觉拥挤效应的神经机制

  2019年7月8日,《当代生物学》(Current Biology)刊发了北京大学心理与认知科学学院、生命科学联合中心和麦戈文脑科学研究所方方教授课题组的研究论文“The critical role of V2 population receptive fields in visual orie

磁共振成像新技术“看清”大脑神经活动

韩国研究团队开发出一种新方法,可使用磁共振成像(MRI)在毫秒级时间尺度上,非侵入性地跟踪大脑信号的传播。这项发表于《科学》杂志的最新研究有望给了解大脑带来革命性突破。 依赖血氧水平的功能磁共振成像(fMRI)用于获取活人的大脑图像。这项技术并不是直接观察神经元活动,而是通过一项指标追踪大脑中血

核磁共振成像技术实验仪的功能

    核磁共振成像技术实验仪功能更强大,可开设更多教学内容的核磁共振教学仪器,可满足近代物理、医学影像、生物医学工程等不同的实验要求。MRIjx-Advance型磁共振成像教学实验仪不仅可用于教学,还可以用于科研做为大学生、研究生进行拓展性实验的平台。  一、核磁共振成像技术实验仪两大特点:开放性

快速磁共振成像技术问世

  为了能够进行慢速扫描,医生们一直在和那些不停扭动的儿童作斗争。   如今,幸亏更快速的磁共振成像(MRI)技术的研制成功,他们可能再也不用焦虑如何让自己的病人保持长时间的静止了。   图中所展示的对一名6岁先天性心脏病患者的心脏血流情况进行的成像仅需要10分钟,而非传统MRI

英攻克磁共振成像新技术

最新的磁共振成像研究使人们进一步了解脑部疾病。图片来源:英国诺丁汉大学  磁共振成像(MRI)领域的一项新发现有望提高多发性硬化症等脑部疾病的诊断率和监测效果。研究人员指出,来自英国诺丁汉大学彼得·曼斯菲尔德爵士磁共振中心的这一研究成果,可能会为医学界的磁共振成像提供一种新工具。  该项研究发表在日

何谓核磁共振成像技术

核磁共振成像技术(即MRI)是近十几年来发展起来的一项新技术。它无须借助X 射线,对人体免除了辐射危害。其成像清晰度极高,在不向椎管内注射造影剂的情况下,就可以达到近乎脊髓造影的分辨程度。较之计算机断层扫描和脊髓造影,核磁共振成像技术对于软组织的显影能力要更胜一筹,它可以直接观察脊髓和髓核组织、纤维

磁共振成像新技术在上海诞生

  一种新的医学磁共振成像技术日前在上海张江科技园诞生。这种高温超导射频线圈技术是目前世界磁共振领域灵敏度最高的电子眼,它造价相对低廉,达到的效果却堪比昂贵的高场磁共振系统,从而使我国医疗机构有望用低成本生产高质量的磁共振设备,进而降低患者的诊疗负担。   磁共振成像检测系统是一种对人体无损伤的疾

我国自主研发新型磁共振成像技术

  图像灵敏度和清晰度提高3至5倍   磁共振检查是早期诊断的重要手段,但我国长期以来存在普及率低、技术设备为西方垄断、收费高等问题。上海张江高科技园区内的美时医疗科技公司今天正式公布,其自主研发出一种新型医学磁共振成像技术——高温超导射频线圈,该技术使人体图像分辨率和清晰度提高了3至5倍,是目前

浅谈磁共振弥散张量纤维束成像技术在听神经瘤中的...2

2.2患者术后情况 患者术后复查MRI平扫及增强扫描示10例肿瘤全切除,1例内听道部分肿瘤残余(见图2)。患者面神经均解剖保留(见图3A),保留率为100%。术中面神经动态肌电图监测可提示并定位面神经,主动刺激肌电图监测有助于确认可疑组织是否为面神经并证实其完整性(见图3B)。术后随访1~12个月,

浅谈磁共振弥散张量纤维束成像技术在听神经瘤中的...1

听神经瘤是常见的颅内肿瘤之一,随着显微外科技术的发展和电生理监测技术的广泛应用,听神经瘤手术死亡率已不足0.5%,但术后面瘫严重影响患者生活质量。一项Meta分析表明大型听神经瘤术后面神经解剖保留率为88.8%,功能优良率仅62.9%。因此功能保留逐渐成为治疗的首要目标,在听神经瘤中,正常的面神经因

磁共振神经根水成像鉴别类肿瘤样椎间盘突出症与神经...

磁共振神经根水成像鉴别类肿瘤样椎间盘突出症与神经鞘瘤病例分析脱垂游离型椎间盘突出症是指突出的椎间盘组织脱离纤维环裂孔,在椎管内游离移动一定距离引起的相应神经根压迫症状。磁共振成像(MRI)是诊断脊柱病变的首选检查和金标准。在极少数情况下游离的椎间盘组织MRI表现与一些硬膜外肿瘤表现相似,如神经鞘瘤或

核磁共振成像技术步入分子层面

  美国和加拿大科学家分别采用新型核磁共振成像(MRI)技术观测到人体内的分子变化,从而大大提高了MRI扫描的速度和精度,可在未来用于更快地检测癌症等疾病。研究发表在最新一期《科学》杂志上。   两国科学家使用的MRI技术都通过操控分子的旋转来提高扫描的速度和精度,从而可以在分子层面快速地完成诸如

血氧水平依赖功能磁共振成像的展望

  MRI的引入已经成为神经科学研究领域一个不可缺少的研究工具, 但是它也存在一些缺陷, 比如它的精确性还没有被完全阐明, 尤其是它的空间特异性, 因为大的静脉能产生BOLD响应, 而这些静脉远离神经活动的部位。研究表明,fMRI受大血管作用的控制, 这些大血管在血管图像中能够很容易地看出来。大血管

血氧水平依赖功能磁共振成像的基础

  血氧水平依赖(blood oxygen level dependent, BOLD)效应最先是由 Ogawa 等于1990 年提出, 他们发现氧合血红蛋白含量减少时, 磁共振信号降低, 并且还发现信号的降低不仅发生在血液里, 而且还发生在血管外, 于是认为这种效应是血液的磁场性质变化引起的。此后

磁共振弥散张量成像纤维束示踪可评价受损脊神经元的功能

  椎间盘退变神经根病变患者纤维束示踪成像显示患侧神经根纤维束聚拢,不完整,面积减小。   研究发现,神经根若被突出或膨出的椎间盘压迫,在扩散张量图像上表现为神经根纤维束的截面积减小,纤维束发生断裂及聚拢,无法显示分支。中国河北医科大学第二医院田欣博士所在课题组进行的一项关于“Scanning

核磁共振新技术:歌唱时也能成像

  据国外媒体报道,在唱歌或是说话时,需要人的胸部、颈部、下颚、舌头和嘴唇等处上百种肌肉相互协作才能发出声音。利用新发明的一种超高速核磁共振成像技术,美国贝克曼高等科学技术研究所的研究人员现在能够对这些肌肉的协作进行成像,研究这些协作的进程。  “人能够发出各种声音,能够唱歌,这一点让我感到惊叹”,

关于核磁共振成像技术的优点介绍

  核磁共振成像技术的最大优点是能够在对身体没有损害的前提下,快速地获得患者身体内部结构的高精确度立体图像。利用这种技术,可以诊断以前无法诊断的疾病,特别是脑和脊髓部位的病变;可以为患者需要手术的部位准确定位,特别是脑手术更离不开这种定位手段;可以更准确地跟踪患者体内的癌变情况,为更好地治疗癌症奠定

核磁共振新技术:歌唱时也能成像

  贝克曼生物医学成像中心的核磁共振仪采集到的人歌唱时的喉部运动图像,采集速度每秒100帧  据国外媒体报道,在唱歌或是说话时,需要人的胸部、颈部、下颚、舌头和嘴唇等处上百种肌肉相互协作才能发出声音。利用新发明的一种超高速核磁共振成像技术,美国贝克曼高等科学技术研究所的研究人员现在能够对这些肌肉的协

核磁共振成像仪的技术应用

NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术。对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”。目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱。核磁共振的特点:①共振频率决定于核

磁共振成像的优点

  与1901年获得诺贝尔物理学奖的普通X射线或1979年获得诺贝尔医学奖的计算机层析成像(computerized tomography,CT)相比,磁共振成像的最大优点是它是当前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有6000万病例利用核磁共振成像技术进行检查

快速磁共振成像技术问世-仅需10min

图中所展示的对一名6岁先天性心脏病患者的心脏血流情况进行的成像仅需要10分钟,而非传统MRI所需的1个小时。   为了能够进行慢速扫描,医生们一直在和那些不停扭动的儿童作斗争。如今,幸亏更快速的磁共振成像(MRI)技术的研制成功,他们可能再也不用焦虑如何让自己的病人保持长时间的静止

功能性磁共振成像可预测抑郁症复发

  英国伦敦大学国王学院9月7日发布研究成果说,利用功能性磁共振成像技术,医护人员能更准确判断康复中的重度抑郁症患者中哪些人更易复发。  来自伦敦大学国王学院和曼彻斯特大学的研究人员对64名患重度抑郁症但症状已缓解的病人实施功能性磁共振成像扫描,以研究他们脑部出现的变化。  扫描后,研究人员对这些病

脊索瘤的磁共振成像诊断及鉴别诊断实验—磁共振成像法

实验方法原理原子核具有一定的质量和一定的体积,可以把它看成是一个接近球形的固体。实验表明,大多数的原子核如同陀螺一样,都围绕着某个轴作自旋运动。例如,常见的 H11和C136(6是质子数即原子序数,也是电荷数;13是质量数=质子数+中子数)核等都具有这种运动。原子核的自身旋转运动称为核的自旋运动。一

科学家通过功能性磁共振成像技术扫描大脑来治疗恐惧症

  据外媒New Atlas报道,日本和美国科学家设计的一个新系统将为严重恐惧症患者(phobias)带来新的希望。它基于使用功能性磁共振成像(fMRI)来真实地“看到”患者何时想象他们害怕的事物。   image.png   该实验技术由日本国际先进电信研究院和加利福尼亚大学洛杉矶分校的研究人

科学家通过功能性磁共振成像技术扫描大脑来治疗恐惧症

  据外媒New Atlas报道,日本和美国科学家设计的一个新系统将为严重恐惧症患者(phobias)带来新的希望。它基于使用功能性磁共振成像(fMRI)来真实地“看到”患者何时想象他们害怕的事物。  该实验技术由日本国际先进电信研究院和加利福尼亚大学洛杉矶分校的研究人员共同开发。首先,科学家对30

磁共振成像的其他进展

    核磁共振分析技术是通过核磁共振谱线特征参数(如谱线宽度、谱线轮廓形状、谱线面积、谱线位置等)的测定来分析物质的分子结构与性质。它可以不破坏被测样品的内部结构,是一种完全无损的检测方法。同时,它具有非常高的分辨本领和精确度,而且可以用于测量的核也比较多,所有这些都优于其它测量方法。因此,核磁共

磁共振成像历史发展介绍

  磁共振成像是一种较新的医学成像技术,国际上从一九八二年才正式用于临床。它采用静磁场和射频磁场使人体组织成像,在成像过程中,既不用电子离辐射、也不用造影剂就可获得高对比度的清晰图像。它能够从人体分子内部反映出人体器官失常和早期病变。它在很多地方优于X线CT。虽然X-CT解决了人体影像重叠问题,但由

磁共振成像(MRI)是什么

MRI为Magnetic Resonance Imaging的缩写,中文称“磁共振或磁共振成像”,过去曾称“核磁共振”,亦可称共轭摄影法。MRI是一种新颖的成像方法,它具有组织对比性强、空间分辨率高、多平面的解剖结构显示和无射线损伤等特点,并对生理变化特别敏感。近年来,医学影像学技术飞速发展,已有4

核磁共振的成像原理

核磁共振成像原理原子核自旋,有角动量。由于核带电荷,它们的自旋就产生磁矩。当原子核置于静磁场中,本来是随机取向的双极磁体受磁场力的作用,与磁场作同一取向。以质子即氢的主要同位素为例,它只能有两种基本状态:取向“平行”和“反向平行”,他们分别对应于低能和高能状态。精确分析证明,自旋并不完全与磁场趋向一