波散XRF与能散XRF的区别

一.X射线荧光分析仪简介 X射线荧光分析仪是一种比较新型的可以对多元素进行快速同事测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF)。是用晶体分光而后由探测器接受经过衍射的特征X射线信号。如果分光晶体和控测器做同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X射线的波长及各个波长X射线的强度,可以据此进行特定分析和定量分析。该种仪器产生于50年代,由于可以对复杂体进行多组同事测定,受到关注,特别在地质部门,先后配置了这种仪器,分析速度显著提高,起了重要作用。随着科学技术的进步在60年代初发明了半导体探测仪器后,对X荧光进行能谱分析成为可能。能谱色散型X射线荧光光谱仪(ED-XRF),用X射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)这节进入SI......阅读全文

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪原理分析

X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

波长色散X射线荧光光谱仪

我国学者对不同时期WDXRF的进展曾予以评述。WDXRF谱仪从仪器光路结构来看,依然是建立在布拉格定律基础之上,但仪器面目全新。纵观30年来的发展轨迹,可总结出如下特点 。(1) 现代控制技术的应用使仪器精度大幅度提升。WDXRF谱仪在制造过程中,从20世纪80年代起,一些机械部件为电子线路所取代,

什么是X射线荧光光谱仪

X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是轻元素Li的K系谱线。1923年赫维西(Hevesy,G.Von)提

X射线荧光光谱仪-检测标准

JJG810-1993《波长色散X射线荧光光谱仪》检定周期为1年。

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪制样要求

X射线荧光光谱仪制样要求:   样品的尺寸(直径x高)50x 40mm,重量400g。   1、定量分析   定量分析是对样品中元素进行准确定量测定。定量分析需要一组标准样品做参考。常规定量分析一般需要5个以上的标准样品才能建立较可靠的工作曲线。   常规X射线荧光光谱定量分析对标准样品的基本要求:

x射线荧光光谱仪安全事项

  在分析过程中,给管通电后,分析仪会发射定向辐射束。应尽合理的努力使放射线的暴露量保持在实际可行的剂量限度以下。这就是所谓的ALARA(最低合理可行)原则。三个因素将有助于最大程度地减少您的辐射暴露:时间,距离和屏蔽。  尽管便携式x射线荧光光谱仪或手持式x射线荧光光谱仪元素分析仪发出的辐射与普通

X射线荧光光谱仪的概述

  自1895年伦琴发现X射线以来,X射线及相关技术的研究和应用取得了丰硕成果。其中,1910年特征X射线光谱的发现,为X射线光谱学的建立奠定了基础;20世纪50年代商用X射线发射与荧光光谱仪的问世,使得X射线光谱学技术进入了实用阶段;60年代能量色散型X射线光谱仪的出现,促进了X射线光谱学仪器的迅

X射线荧光光谱仪指标信息

 X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水平

x射线荧光光谱仪安全事项

  在分析过程中,给管通电后,分析仪会发射定向辐射束。应尽合理的努力使放射线的暴露量保持在实际可行的剂量限度以下。这就是所谓的ALARA(最低合理可行)原则。三个因素将有助于最大程度地减少您的辐射暴露:时间,距离和屏蔽。  尽管便携式x射线荧光光谱仪或手持式x射线荧光光谱仪元素分析仪发出的辐射与普通

X射线荧光光谱仪的原理

  X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水

X射线荧光光谱仪的原理

X射线荧光的物理原理:当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量

X射线荧光光谱仪工作原理

2.1 X射线荧光的物理原理 X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位nm)描述。 X射线荧光是原子内产生变化所致的现象。一个稳定的原子结构由原子核及核外电子组成。其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子(如K层)在足

X射线荧光光谱仪的简介

  X射线荧光光谱仪(X-ray Fluorescence Spectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-ray fluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于元素分析和化学分析,特

X射线荧光光谱仪的理论基础X射线的起源

  1895年德国物理学家威廉·康拉德·伦琴研究阴极射线管时,发现阴极能放出一种有穿透力的、肉眼看不见的射线。由于它的本质在当时是一个“未知数”,故称之为X射线。  伦琴无条件地把X射线的发现奉献给人类,没有申请ZL。  X射线和可见光一样属于电磁辐射,但其波长比可见光短得多,在10-6~10nm。

X射线荧光光谱仪中X射线的由来和性质分析

X射线荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所

X射线荧光光谱仪的理论基础X射线的产生

  高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高。  产生X射线源有同位素放射源、X射线管、激光等离子体、同步辐射和X射线激光等。

X射线荧光光谱仪的理论基础X射线的本质

  X射线的本质是电磁辐射,具有波粒二像性。  1)波动性  X射线的波长范围:0.01~100  用于元素分析的X射线光谱所使用的波长范围在0.01~11nm  2)粒子性  特征表现为以光子形式辐射和吸收时具有的一定的质量、能量和动量。  表现形式为在与物质相互作用时交换能量。如光电效应、荧光辐

X射线荧光(XRF):理解特征X射线

  什么是XRF?   X射线荧光定义:由高能X射线或伽马射线轰击激发材料所发出次级(或荧光)X射线。这种现象广泛应用于元素分析。  XRF如何工作?   当高能光子(X射线或伽马射线)被原子吸收,内层电子被激发出来,变成“光电子”,形成空穴,原子处于激发态。外层电子向内层跃迁,发射出能量等于两级能

X射线荧光光谱仪相关知识介绍

X射线荧光光谱仪是一种常用的光谱仪产品,可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。X射线荧光光谱仪具有灵明度强、度高、检测范围广、自动快速等特点,广泛应用于地质、冶金、有色金属加工、建材、考古等领域,在主、次量和痕量元素分析中发挥的作用日趋重要

x射线荧光光谱仪的指标信息

  1.发射源是Rh靶X光管,最大电流125mA,电压60kV,最大功率3kW  2.仪器在真空条件下工作,真空度

X射线荧光光谱仪的使用形态

  XRF用X光或其他激发源照射待分析样品,样品中的元素之内层电子被击出后,造成核外电子的跃迁,在被激发的电子返回基态的时候,会放射出特征X光;不同的元素会放射出各自的特征X光,具有不同的能量或波长特性。检测器(Detector)接受这些X光,仪器软件系统将其转为对应的信号。这一现象广泛用于元素分析

X射线荧光光谱仪的优点介绍

X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象,适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。特别是在RoHS检测领域应用得多也广泛。 X射线荧光光谱仪的优点: 1) 分析速度快。测定用时与测

X射线荧光光谱仪的使用形态

X射线荧光光谱仪的使用形态X射线荧光光谱仪(X-ray Fluorescence Spectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-ray fluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于

X射线荧光光谱仪的优势特点

X射线荧光光谱仪的优势特点介绍: a) 分析速度高。测定用时与测定精密度有关,2~5分钟就可以测完样品中的全部待测元素。 b) X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没关系(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变