新材料可通过手机检测有毒气体

一个日美联合研究小组最新开发出一种可以高灵敏度检测有毒气体的感应材料,利用这种材料及近场通信(NFC)技术,可以让手机在几秒内读出空气中是否存在有毒气体。 日本物质材料研究机构日前说,他们和美国麻省理工学院合作,在碳纳米管表面涂上一层被称为超分子聚合物的高分子材料,使其变成感应材料。 据介绍,这种感应材料是利用碳纳米管的导电性变化来检测有毒气体浓度。碳纳米管本来是导电性强的材料,但被超分子聚合物覆盖后其导电性变差。当接触有毒气体时,超分子聚合物的化学键就会被部分破坏;而当超分子聚合物表面涂层被破坏后,碳纳米管导电性就会大幅上升。 将这种感应材料植入使用近场通信技术的电路中,就成为可检测有毒气体的传感器。操作时,只需用具有近场通信功能的手机“刷”一下传感器,5秒内就可在手机上读出是否存在有毒气体,能检出的浓度可低至10ppm(1ppm为百万分之一)。 这种传感器属于一次性用品,但是它小巧便携且成本极低,今后有望......阅读全文

超净工作台材料

   超净工作台笼盒由耐高温的透明塑料材料制成,一套笼盒由上盖、食槽、水槽、底盒、锁紧扣、进出风口组件、硅橡胶密封垫圈等组成有的上盖上    还有一个称之为生命之窗的空气过滤网。独立通风笼盒是IVC设备的关键所在,它要具有一定的密闭性,能防止盒外空气的进入,以减少可能的感染来源,又要能让洁净空气流畅

声学超材料研究获进展

   近期,中科院力学所微重力重点实验室王育人团队在如何利用单相材料通过简单结构实现双负特性方面取得重要进展。该系列成果已发表在《科学报告》《应用声学》与《冲击与振动》等期刊上。图片来源网络由于奇异的物理特性,声学超材料在波定向控制与超分辨成像等领域有着广泛的应用前景。目前双负声学超材料结构构型通常

超疏水仿生材料表面

由于超疏水材料,特别是表面改性后仿生材料(仿荷叶超疏水或仿壁虎钢毛结构超亲水材料)的接触角的表征因结构的特殊性,测试起来特别困难。现有的理论通常基于Wenzel和Cassie模型。这些理论为我们的分析奠定了一定的基础,而实际应用于本征接触角的表征计算时难度相当大。有一些科研人员力图通过分析表面粗糙度

声学超材料研究获进展

近期,中科院力学所微重力重点实验室王育人团队在如何利用单相材料通过简单结构实现双负特性方面取得重要进展。该系列成果已发表在《科学报告》《应用声学》与《冲击与振动》等期刊上。

新分子印迹聚合物展现临床诊断前景

光刻硼亲和分子印迹法的原理(A)及步骤(B) 非印迹聚合物(A)和分子印迹聚合物(右)对模板分子的识别作用及裸眼检测   抗体是生命科学研究、疾病治疗和诊断中的重要生物分子,但抗体存在着价格昂贵、稳定性差和与抗原结合后不易洗脱等缺点。因此,价廉、稳定和洗脱方便的抗体的替代品不仅具有重要的科学意义

分子尺度的混乱可提升聚合物性能

  美国科学家在8月4日出版的《自然·材料学》网络版上指出,分子尺度的混乱实际上能提高聚合物的性能,最新研究有助于推动低成本的商用塑料太阳能电池的研发工作。   几十年来,科学家们一直希望制造出性能足以与硅基太阳能电池相媲美的柔性塑料太阳能电池,为此,他们需要制造出能让电荷更快流经太阳能电池的塑料

关于高分子聚合物的相关介绍

  高分子聚合物指由键重复连接而成的高分子量(通常可达10~106)化合物。包括晶态结构、非晶态结构、取向态结构以及织态结构。  人类利用天然聚合物的历史久远,直到19世纪中叶才跨入对天然聚合物的化学改性工作,1839年C.Goodyear发现了橡胶的硫化反应,从而使天然橡胶变为实用的工程材料的研究

新聚合物材料可高效“捕捉”温室气体

  温室气体,通常被认为是全球气候变暖的罪魁祸首,它们通常来源于工业生产和化石燃料的燃烧。其中,二氧化碳是排放量最大的温室气体,也是人类抑制全球变暖过程中的主要目标,但高昂的成本和低下的回报,成为了碳治理道路上的拦路虎。  不过,近日传来了一个好消息。据每日科学网9月9日报道,日本京都大学细胞材料研

聚合物纳米复合材料研究进展

  聚烯烃是一类综合性能优良、应用十分广泛的通用树脂。由于其具有众多的优良特性,其发展十分迅速、应用十分普遍。而粘土作为我国范围内来源丰富、价格低廉等优点也成为科学界研究的目标之一。本文对聚烯烃/粘土纳米复合材料的发展进行了简单的总结。   1. 聚烯烃   聚烯烃是一类由烯烃以及某些环烯烃单独

手机碎屏可自我修复,“活”材料有望科幻成真

摔碎的手机屏能像皮肤一样实现自我修复?盖着的杯子能像胃一样消化食物?穿戴的衣服能像皮肤一样感知周围的环境情况?……南京工业大学材料化学工程国家重点实验室教授余子夷团队联合英国剑桥大学教授Tuomas Knowles团队的最新研究成果有望让这些想象走进现实。3D打印构筑活体催化材料 课题组供图日前,两

聚碳酸酯:小米塑料手机成功的材料借鉴

  他被视为"中国的乔布斯",那么塑料手机是否会让雷军的小米手机也沾上苹果手机的一丝光环呢?   他穿着一件黑色的polo衫,牛仔裤,而不是黑色高领衫。脚上穿的是匡威,而不是新百伦。但形象精心修饰过。小米公司的CEO雷军立志成为中国的乔布斯。他在不到四年前在北京创办的小米公司现在已有了3000多名

何祖华小组植物温度感应分子机制研究获进展

  近日,美国《国家科学院院刊》在线发表了中科院上海生科院植生生态所何祖华研究组与国内外合作的研究成果,揭示了高温解除转录后基因沉默并伴随着隔代记忆的分子机制。   据介绍,全球气候变暖伴随着植物的生长发育行为变化,温度波动会影响作物的产量,尤其是高温会对农作物生产造成严重威胁。因此,研究高温影响

使用超高效聚合物色谱(APC)系统对低分子量聚合物进...

使用超高效聚合物色谱(APC)系统对低分子量聚合物进行快速高分辨率分析应用优势 ■ 既能对聚合物进行快速表征又不会降低性能水平 ■ 与常规GPC分析相比,可提高对低分子量低聚物的分辨率 ■ 与常规GPC分析相比,可提高校准水平并由此对低分子量低聚物进行更准确的测定 ■ 可对聚合物进行快速监测,从而能

苏州纳米所在离子感应致动智能材料研究方面取得进展

  离子聚合物-金属复合材料(Ionic polymer-metal composites, IPMC)是一种由金属电极和离子聚合物构成三明治结构的离子感应电致动智能材料,因致动电压低、变形大、柔性、可控性好等特点,使其成为轻质仿生系统首选,具有重要科学研究意义和应用价值。由于其致动机制主要源自

儿童大脑对手机电磁波吸收量超成人60%

            儿童大脑对手机电磁波吸收量超成人60%  在大人们巴不得“关掉手机”甚至“扔掉手机”时候,越来越多的学生乃至幼儿园的小朋友,却捧着手机玩得不亦乐乎。近日,一项来自美国的调查显示,75%的美国青少年拥有手机,这一数字较2004年上升30%。加拿大的统计

超小分子Edaravone显示ALS疗效

  【新闻事件】:在日前正在举行的美国神经学年会上Mitsubishi Tanabe公布了其ALS药物Edaravone的一个三期临床试验结果。在标准疗法基础上加入Edaravone显着改善ALS患者综合功能指标ALSFRS-R(-5.0对-7.5),同时也改善运动、呼吸等局部功能。Edaravon

复旦聚合物分子工程国家实验室验收

  日前,依托复旦大学建设的聚合物分子工程国家重点实验室通过科技部组织的验收。   两年来,该实验室以聚合物分子工程为主线,从通用高分子的高性能化、生物医用高分子的设计、高分子相关的功能介孔材料、高分子多尺度制备科学与技术等四个方向,开展了基础研究和应用基础研究。他们充分发挥基础研究的优势,解决了

高分子聚合物按性质和用途分类

  按材料的性质和用途分类,可将高聚物分为塑料、橡胶和纤维。  橡胶通常是一类线型柔顺高分子聚合物,分子间次价力小,具有典型的高弹性,在很小的作用力下,能产生很大的形变(500%~1000%),外力除去后,能恢复原状。因此,橡胶类用的聚合物要求完全无定型,玻璃化温度低,便于大分子的运动。经少量交联,

高分子聚合物的远程结构介绍

  ⑴高分子的大小:对高分子大小的量度,最常用的是分子量。由于聚合反应的复杂性,因而聚合物的分子量不是均一的,只能用统计平均值来表示,例如数均分子量和重均分子量。分子量对高聚物材料的力学性能以及加工性能有重要影响,聚合物的分子量或聚合度只有达到一定数值后,才能显示出适用的机械强度,这一数值称为临界聚

分子印迹聚合物固相萃取研究进展

对最新报道的分子印迹聚合物作为固相萃取剂及其在色谱样品前处理方面的应用进行综述和展望,主要包括固相萃取、基质固相分散萃取、固相微萃取、搅拌棒吸附萃取和磁性材料萃取,同时总结了分子印迹聚合物制备技术面临的挑战和问题,提出了可能的解决方案

分子印迹聚合物的基本原理介绍

  分子印迹技术是在仿生科学和模拟自然界中酶与底物及受体与抗体作用的基础之上发展来的一项技术。分子印迹是通过以下方法实现的:(1)使印迹分子与功能单体(functional monomer)之间通过共价键(covalent)或Π和非共价键(non-covalent)结合,形成主客体配合物(Host-

高分子聚合物的基本分类介绍

  可以从不同的角度对聚合物进行分类,如从、加热行为、聚合物结构等。  按分子主链的元素结构,可将聚合物分为碳链、杂链和元素有机三类。  碳链聚合物大分子主链完全由碳原子组成。绝大部分烯类和二烯类聚合物属于这一类,如聚乙烯、聚苯乙烯、聚氯乙烯等。  杂链聚合物大分子主链中除碳原子外,还有氧、氮、硫等

关于高分子聚合物的产生的介绍

  天然聚合物多从自然植物经物理或化学方法制取,合成聚合物由低分子单体通过聚合反应制得。聚合方法通常有本体(熔融)聚合、溶液聚合、乳液聚合和悬浮聚合等,依据对聚合物的使用性能要求可对不同的方法进行选择,如带官能团的单体聚合常采用溶液或熔融聚合法。研究聚合过程的反应工程学科分支称为聚合反应工程学。聚合

关于高分子聚合物的发展简史介绍

  1870年J.W.Hyatt用樟脑增塑硝化纤维素,使硝化纤维塑料实现了工业化。1907年L.Baekeland报道了合成第一个热固性酚醛树脂,并在20世纪20年代实现了工业化,这是第一个合成塑料产品。1920年H.Standinger提出了聚合物是由结构单元通过普通的共价键彼此连接而成的长链分子

“超材料”激光全息研究获突破

  近日,武汉大学电子信息学院副教授郑国兴与合作者一起,提出一种新颖的反射式金纳米天线阵列方案,并成功应用于激光全息领域。相关研究以在线头条登载于《自然—纳米技术》,同时该刊物新闻与观察栏目对这一研究也进行了重要评述。  超颖表面材料是一种在衬底表面加工出的超薄金属微纳结构材料,与电磁波相互作用时常

“超材料”:能否让科幻变成现实

   想起十几年前的遭遇,仍让清华大学教授周济感觉有点可笑,“当时我听到超材料的概念,后来报项目的时候用上这个词,第一次没上去,一个评委对我说‘你的提法就不能让你上,别人是做材料的,就你叫超材料’。第二次我改成另一个词,后来通过了。”  事实上,“超材料”指的是一些具有人工设计结构并呈现出天然材料所

超材料可从柔性“秒变”刚性

  美国研究人员使用机械超材料(具有自然界中不存在的独特机械性能)开发出一种新型材料,可响应磁场从柔性变为刚性,在智能可穿戴设备和柔性机器人中具有广泛应用前景。  当前的机械超材料有着吸引人的特性,如负热膨胀,低重量时的高强度和高刚度。但一旦构建完成,其属性将无法更改或调整。美国劳伦斯利弗莫尔国家实

永磁材料与超磁致伸缩材料的应用价值

  稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料。稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)系永磁体,其中SmCo磁体的磁能积在15~30MGOe之间,NdFeB系永磁体的磁能积在27~50MGOe之间,被称

永磁材料与超磁致伸缩材料的应用价值

  稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料。稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)系永磁体,其中SmCo磁体的磁能积在15~30MGOe之间,NdFeB系永磁体的磁能积在27~50MGOe之间,被称

兰州化物所高强韧聚合物材料研究获进展

强度和韧性是多数聚合物工程材料基本和重要的参数。而强度和韧性往往是相互矛盾的,这制约了高性能材料的发展。因此,在不牺牲韧性的情况下,实现高强度是材料科学的难题和挑战。中国科学院兰州化学物理研究所先进润滑与防护材料研究发展中心聚合物自润滑复合材料课题组,致力于高性能聚氨酯的设计制备及其摩擦学性能研究,