Nature:“细胞制图师”刷新线粒体分裂理论

一项最新研究发现几乎所有活细胞都有的“发电机”――线粒体分裂的方式与之前教科书上的并不相同。科罗拉多大学博尔德分校的这项新研究首次揭示了线粒体的真正奥秘。科罗拉多大学博尔德分校的Gia Voeltz教授自1993年作为加州大学大四学生,进入Manuel Ares教授实验室进行RNA剪接研究时,就找到了自己的职业生涯方向。她被誉为“细胞制图师”,这是因为她“绘制”了许多细胞亚结构的作用网络,如2011年,她带领其研究组惊奇地发现一种重要的细胞器:内质网 (ER)会在细胞质中张出像蜘蛛网一样的网络,环绕包围包括线粒体在内的一些细胞器。他们发现一旦内质网的“触手”触动某个线粒体,就会启动收缩,一种称为动力相关蛋白(dynamin-related protein, Drp1 )的细胞蛋白会在内质网接触点上进一步收紧线粒体。经过几年的深入探索,Voeltz的团队又发现一旦线粒体受到 Drp1 蛋白的挤压,第二个蛋白:Dyn2 就会出现,完......阅读全文

线粒体基因组的概念

线粒体是真核细胞的一种细胞器,有它自己的基因组,这些基因组统称为线粒体基因组。线粒体内的DNA,可参与蛋白质的合成,转录,与复制,具有较高的研究价值。

线粒体基因组的简介

线粒体是真核细胞的一种细胞器,有它自己的基因组,编码细胞器的一些蛋白质。除了少数低等真核生物的线粒体基因组是线状DNA分子外(如纤毛原生动物Tetrahymena pyniform和Paramecium aurelia以及绿藻Clam ydoomonas rein—hardtia 等),一般都是一个

线粒体基因组的简介

  线粒体是真核细胞的一种细胞器,有它自己的基因组,编码细胞器的一些蛋白质。除了少数低等真核生物的线粒体基因组是线状DNA分子外(如纤毛原生动物Tetrahymena pyniform和Paramecium aurelia以及绿藻Clam ydoomonas rein—hardtia 等),一般都是

线粒体基因组的原理

  线粒体基因组能够单独进行复制、转录及合成蛋白质,但这并不意味着线粒体基因组的遗传完全不受核基因的控制。线粒体自身结构和生命活动都需要核基因的参与并受其控制,说明真核细胞内尽管存在两个遗传系统,一个在细胞核内,一个在细胞质内,各自合成一些蛋白质和基因产物,造成了细胞核和细胞质对遗传的相互作用;但是

线粒体基因组的简介

  线粒体是真核细胞的一种细胞器,有它自己的基因组,编码细胞器的一些蛋白质。除了少数低等真核生物的线粒体基因组是线状DNA分子外(如纤毛原生动物Tetrahymena pyniform和Paramecium aurelia以及绿藻Clam ydoomonas rein—hardtia 等),一般都是

研究发现:一组线粒体蛋白能延长生物寿命

  据美国物理学家组织网近日报道,瑞典哥特堡大学研究人员近日识别出一组线粒体蛋白质,并发现生物体如果缺乏了这组蛋白中的某些种,其他蛋白反而会将细胞的基因组加固,导致与老化相关的疾病延迟到来,从而可延长生物体的寿命。因此控制这些线粒体蛋白质的活性有助于研究与老化相关的疾病,如癌症、老年痴呆症、帕金森症

线粒体基因组的原理简介

  线粒体基因组能够单独进行复制、转录及合成蛋白质,但这并不意味着线粒体基因组的遗传完全不受核基因的控制。线粒体自身结构和生命活动都需要核基因的参与并受其控制,说明真核细胞内尽管存在两个遗传系统,一个在细胞核内,一个在细胞质内,各自合成一些蛋白质和基因产物,造成了细胞核和细胞质对遗传的相互作用;但是

线粒体基因组的基本性质

与核基因组相比,线粒体基因组有如下性质:所有的基因都位于一个单一的环状DNA分子上。遗传物质不为核膜所包被。DNA不为蛋白质所压缩。基因组没有包含那么多非编码区域(调控区域或“内含子”)。一些密码子与通用密码子不同。相反,与一些紫色非硫细菌相似。一些碱基为两个不同基因的一部分(重叠基因):某碱基作为

线粒体基因组的DNA相关介绍

  与细胞核DNA相比,mtDNA作为生物体种系发生的“分子钟”(molecular clock)有其自身的优点:①突变率高,是核DNA的10倍左右,因此即使是在近期内趋异的物种之间也会很快地积累大量的核苷酸置换,可以进行比较分析;②因为精子的细胞质极少,子代的mtDNA基本上都是来自卵细胞,所以m

线粒体基因组的大小解释

已知的是哺乳动物的线粒体基因组最小,果蝇和蛙的稍大,酵母的更大,而植物的线粒体基因组最大。人、小鼠和牛的线粒体基因组全序列已经测定,都是16.5 kb左右。每个细胞里有成千上万份线粒体基因组DNA拷贝。果蝇和蛙的细胞里有多少个线粒体以及每个线粒体有多少份DNA拷贝,还没有准确的数字。估计线粒体DNA

线粒体基因组的疾病关系简介

  人线粒体DNA(mtDNA),共包含37个基因,这37个基因中有22个编码转移核糖核酸(tRNA)、2个编码核糖体核糖核酸(12S和16S rRNA),13个编码多肽。  对于可疑线粒体病的患者来说,理想的遗传学诊断方法是发现导致线粒体结构和功能缺陷的相关基因突变。这些基因突变可能在mtDNA上

JCB:饶子和院士与胡俊杰研究组解析线粒体融合蛋白结构

  2016年11月14日细胞生物学的高水平杂志《The Journal of Cell biology》上在线发表了清华大学饶子和课题组与中国科学院生物物理研究所胡俊杰课题组在人类线粒体融合蛋白结构方面的研究成果。饶子和院士、胡俊杰教授与清华大学的娄智勇博士,是本文共同通讯作者。  线粒体会进行融

开发新型超分辨成像技术揭示细胞器互作新现象

  10月25日,中国科学院生物物理研究所李栋课题组与美国霍华德休斯医学研究所博士Eric Betzig、Jennifer Lippincott-Schwartz合作在《细胞》(Cell)杂志发表研究论文“Visualizing intracellular organelle and cytoske

研究揭示内质网还原应激加速衰老

延缓衰老和健康衰老与生活质量密切相关,氧化还原失衡是衰老的重要因素。然而,根据“衰老的自由基学说”通过抗氧化来抗衰老的策略未能达到理想干预效果,促使科研人员对氧化还原调控抗衰老做进一步思考。针对这一问题,中国科学院生物物理研究所陈畅课题组提出精准氧化还原调控是抗氧化的关键(Antioxid Redo

PNAS:为什么线粒体保留自身基因组

  这听起来像科幻小说,认为人体内的每一个细胞都是由一个具有基因组的微小细胞器所占据,我们与其存在共 生关系。但是在现实中,真核生物的生命依赖于线粒体,它以三磷酸腺苷的形式给细胞提供能量(ATP)。几 千年来,线粒体的基因组是在最小基因含量的选择下进化的,但是研究者们一直无法确定“为什么有些线粒体基

研究揭示肿瘤浸润CD8+T细胞代谢适应的新机制

  肿瘤微环境中T细胞效应功能的丧失是免疫治疗失败的主要原因之一。代谢适应对T细胞功能和命运具有重要的调控作用。线粒体能量代谢受到多种线粒体行为的影响,包括线粒体融合和线粒体-内质网耦连,而目前人们对肿瘤浸润CD8+T细胞(TIL)线粒体行为的特性和意义知之甚少。  中山大学肿瘤防治中心高嵩研究员课

关于线粒体基因组的大小的介绍

  已知的是哺乳动物的线粒体基因组最小,果蝇和蛙的稍大,酵母的更大,而植物的线粒体基因组最大。人、小鼠和牛的线粒体基因组全序列已经测定,都是16.5 kb左右。每个细胞里有成千上万份线粒体基因组DNA拷贝。果蝇和蛙的细胞里有多少个线粒体以及每个线粒体有多少份DNA拷贝,还没有准确的数字。估计线粒体D

脂质稳态可以借钙离子依赖的线粒体代谢维持

  脂肪组织是机体内脂肪代谢的核心,其功能出现异常会导致各类生理紊乱从而危及人类健康。Seipin基因突变导致严重的脂肪组织发育和脂肪储积缺陷(Lipodystrophy:脂肪营养不良)并伴有非脂肪组织脂质异位储积。Seipin基因编码了从酵母、果蝇到人类都非常保守的内质网蛋白,然而其蛋白的分子功能

昆明动物所等家养动物线粒体DNA基因组学研究取得进展

  近年来,家养动物线粒体DNA(mtDNA)基因组学得到了迅速发展,积累了大量的mtDNA序列数据。与此同时,一些问题随之浮现出来。除了数据质量存在缺陷(Shi, et al. 2014. Mol Ecol)之外,mtDNA世系划分标准不一,世系命名混乱的问题也已开始干扰家养动物mtDNA的研究工

线粒体膜融合研究取得进展

  近日,中国科学院生物物理研究所胡俊杰课题组的研究成果,以Sequences flanking the transmembrane segments facilitate mitochondrial localization and membrane fusion by mitofusin为题,在

线粒体microRNA成像研究获进展

  近日,国家纳米科学中心研究员李乐乐课题组在线粒体microRNA成像研究中取得重要进展。相关研究成果以Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displace

Nature:“细胞制图师”刷新线粒体分裂理论

一项最新研究发现几乎所有活细胞都有的“发电机”――线粒体分裂的方式与之前教科书上的并不相同。科罗拉多大学博尔德分校的这项新研究首次揭示了线粒体的真正奥秘。科罗拉多大学博尔德分校的Gia Voeltz教授自1993年作为加州大学大四学生,进入Manuel Ares教授实验室进行RNA剪接研究时,就找到

Nature:“细胞制图师”刷新线粒体分裂理论

  一项最新研究发现几乎所有活细胞都有的“发电机”——线粒体分裂的方式与之前教科书上的并不相同。科罗拉多大学博尔德分校的这项新研究首次揭示了线粒体的真正奥秘。  科罗拉多大学博尔德分校的Gia Voeltz教授自1993年作为加州大学大四学生,进入Manuel Ares教授实验室进行RNA剪接研究时

叶绿体和线粒体基因组变异检测获突破

  近日,《公共科学图书馆―综合》发表了中国农业科学院油料作物研究所博士后曾长立与合作导师伍晓明研究建立的能高通量检测叶绿体和线粒体基因组遗传变异的新方法。   据曾长立介绍,叶绿体和线粒体基因组作为植物细胞质基因组,对光合作用、呼吸作用等重要生命过程具有重要意义。   研究叶绿体和线粒体基因组

线粒体全基因组测定揭示家鸡驯化史

  为探讨家鸡的驯化历史,中科院昆明动物研究所的研究人员发现了家鸡较为清晰的母系遗传背景信息。该研究成果日前在线发表于国际期刊《遗传》。   据介绍,从肉蛋供应到供人娱乐,家鸡在人类生产生活中扮演着重要角色。在被驯化之后,家鸡跟随人类扩散到世界各地,成为饲养最为广泛的家禽。而家鸡的驯化问题,自达尔

距今95001800年山东地区人群线粒体全基因组研究新进展

  近日,Science Bulletin在线发表了中国科学院古脊椎动物与古人类研究所古DNA实验室付巧妹研究团队、山东大学文化遗产研究院、山东省文物考古研究院共同主导,联合山东大学历史文化学院、济南市考古研究所和北京大学考古文博学院等,合作完成的关于距今9500-1800年前的山东地区先民线粒体全

陈子江课题组在阻断线粒体遗传病研究领域取得进展

  5月12日,国际学术权威刊物自然出版集团旗下子刊《Cell Research》杂志(IF=14.812)在线发表了山东大学生殖医学研究中心陈子江教授课题组线粒体移植技术研究的新成果。线粒体移植技术,即俗称的“三亲试管婴儿”所应用的关键核心技术。陈子江教授课题组率先在人类受精卵中实施第二极体移植,

中国学者绘制线虫禁食及过饱条件下精准氧化还原图谱

  不同饮食条件能通过影响氧化还原平衡,调控细胞信号转导及细胞代谢过程,进而影响生物的生存和健康状况。因此探索不同饮食条件下的精确氧化还原图谱具有重要意义。中国科学院生物物理研究所陈畅课题组与华东理工大学赵玉政课题组开展合作研究,于6月12日在《逆境生物学》杂志发表论文,绘制了线虫在禁食、再进食及饱

北京基因组所揭示线粒体基因组氧化损伤修复分子机制

  线粒体是真核生物细胞主要的能量代谢场所,其中呼吸链氧化磷酸化过程伴随有高水平的氧自由基(ROS)的产生。线粒体基因组缺乏组蛋白结合保护,所以容易受到ROS攻击而发生损伤,其突变的累积已证实与多种人类疾病(如神经退行性病变、糖尿病、心血管疾病和癌症等)的发生密切相关。有关核基因组DNA损伤修复分子

利用生物素化临近标记的方式建立了人类细胞图谱

  区室化是真核细胞的特征之一,可以将不同的生物化学过程通过空间结构进行划分。显微镜和质谱分析可用于对不同细胞器的蛋白质组进行分析,但是目前针对许多细胞内的区室仍然很难直接采用这两种方法对其中的相互作用组学进行鉴定。  为了对人细胞中的不同区室中的相互作用组进行鉴定,2021年6月2日,加拿大Lun