Antpedia LOGO WIKI资讯

NatBiotechnol:老化会增加诱导多能干细胞的DNA突变频率

在很大程度上,老化过程对极具治疗潜力的干细胞并不友好,日前,一项刊登在国际杂志Nature Biotechnology上的一篇研究报告中,斯克里普斯转化科学研究所等机构的研究人员通过研究老化对诱导多能干细胞(iPSCs)的影响,结果发现,随着干细胞供体年龄增加,其干细胞中遗传突变的水平也会增加。 这项研究就强调了在利用iPSCs进行治疗前,应当对iPSCs携带的有害DNA突变进行及时严格地筛选;研究者Torkamani说道,随着细胞分裂就会有突变发生,随着时间不断延续,这些突变风险就会不断增加,我们研究发现,在年龄较大的供体机体中其iPSCs中往往携带突变的风险较高。而且供体在其80岁时机体iPSCs中蛋白编码基因含有的突变是其20岁时突变的2倍。 这样研究者就可以做出一种随着年龄增长的可预测线性跟踪,但很不幸的是,90岁及以上供体机体血细胞中的iPSCs所含有的突变远比科学家们预测的要少很多,实际上,这些年长者机体中的......阅读全文

遗传自母体的线粒体DNA或使人类老化速度加快

  据媒体报道,之前,科学家将老化归咎于生命中累积的细胞损耗,但是并未考虑可能遗传的老化速度。现在,一个来自瑞典卡罗林斯卡医学院和德国马克斯普朗克生物研究所的研究团队已经发现,线粒体中的受损DNA在一定程度上会控制实验鼠的老化速度。   马克斯普朗克研究所的研究人员Nils-G ran Larsso

Nature:揭示人体最为常见的DNA突变如何发生

  变形器(shape-shifter)并不仅是科幻的东西,它们是真实的,而且它们存在于我们的DNA中。  在一项新的研究中,研究人员描述了人类DNA中的两个通常不匹配的碱基---鸟嘌呤(G)和胸腺嘧啶(T)---如何能够改变形状,从而在DNA螺旋“梯子”上形成一个不显眼的横档。这允许它们通过躲避身

Nature 表观遗传学进展将遗传学、环境与疾病联系了起来!

  21世纪,表观遗传学的研究得到了快速发展,同时其产生了让研究人员感兴趣和憧憬的东西,当然了,这其中也存在一些大肆宣传的成分,本文中,我们回顾了表观遗传学在过去几十年里是如何演变的,同时分析了近年来改变科学家们对生物学理解的一些研究进展;我们讨论了表观遗传学和DNA序列改变之间的相互作用,以及表观

Nat Metabol:最新研究挑战科学家们对机体过早衰老的理解

  近日,一项刊登在国际杂志Nature Metabolism上的研究报告中,来自东芬兰大学的科学家们通过研究发现,线粒体DNA功能的紊乱或会以不同于此前想象中的方式来加速机体的衰老过程;机体衰老速度的加快或许是细胞中异常核苷酸水平和受损细胞核DNA的维持导致的结果。图片来源:CC0 Public

【盘点】衰老与疾病的关联性研究进展

  人为什么会变老?对于人类来说,如何才能长生不老真的是一个令人着迷的问题。但是至今为止都没有一个让人满意的答案。衰老一直是生命过程中的核心环节,也是影响整个人类社会健康发展的重要问题。目前世界各国均面临着严重的人口老龄化,数据显示到2050年约三分之一的中国人口年龄将超过60岁。因此,深入了解衰老

不得不看的2月Nature杂志重磅级亮点研究

  时间总是匆匆易逝,转眼间2月份即将结束,在即将过去的2月里,Nature杂志又有哪些亮点研究值得学习呢?小编对相关文章进行了整理,与大家一起学习。  图片来源:The Sanger Institute/UCL  【1】Nature:戒烟者肺部中的更多健康细胞可降低肺癌风险  doi:10.103

在无症状时及时“抓住”肿瘤“痕迹”,癌症不再防不胜防!

  在癌症增长得致命之前,寻求检测癌症的方法已经迈出了新的一步,新的概念验证数据表明,专门的血液检测可以发现由于肿瘤太小而无法用其他方式进行识别的突变型DNA碎片。  美国临床肿瘤学会周二在芝加哥举行的年会上提出了这一突破性研究。它发现在124位晚期癌症患者的肿瘤中发现的73%的遗传突变也被发现出现

《Nature》子刊:同济大学等成功制备神经干细胞衰老模型

  衰老是指随时间推移身体组织的机能下降,经常引起衰老相关的退行性疾病,例如:三篇论文深入了解衰老带来的神经元变化。越来越多证据表明,神经干细胞的衰老,对于中枢神经细胞衰老非常重要。然而,其根本分子机制的阐述却因为缺乏合适的衰老模型而受阻。   2014 年3月13日,来自同济大学、南通大学、清华

中国医学科学院Hepatology癌症研究新发现

  近日来自中国医学科学院和北京协和医学院的研究人员,在小鼠中证实Toll样受体4(TLR4)通过调控DNA修复蛋白Ku70的表达,对肝癌形成与进展起抑制作用。相关论文发表在国际著名肝脏疾病杂志Hepatology上(最新影响因子11.665)上。   文章的通讯作者是中国医学科学院和北京协和医学

逆转皮肤衰老的关键在线粒体!

  长皱纹、脱发是很多人衰老的典型现象。这一表征是否可以逆转?现在,科学家们在小鼠身上验证了这一可能。他们发现,当线粒体功能受损,小鼠会在几周内皮肤起皱、大面积掉毛发。更意外的是,关闭引发功能障碍的突变可以让小鼠“重返年轻”——衰老症状得到缓解。图片来源:Pixabay  7月20日,《Cell D

高产华人教授Nat Genet发表lncRNA研究成果

  最近,斯坦福大学的研究人员发现,被称为P53的肿瘤抑制基因,可通过一个叫做DINO的调控RNA分子而得以稳定。这种相互作用有助于细胞对DNA损伤做出反应,并可能在癌症的发展和过早老化中发挥作用。该研究结果发表在9月26日的《Nature Genetics》杂志上。  知道什么时候抓牌,什么时候把

Nature:XRCC1基因突变导致小脑运动失调

  在一项新的研究中,来自英国萨塞克斯大学的研究人员发现一种新的导致神经退化的遗传病。相关研究结果于2016年12月21日在线发表在Nature期刊上,论文标题为“XRCC1 mutation is associated with PARP1 hyperactivation and cerebell

重磅级文章解读2019年衰老领域研究新进展!

  时至岁末,转眼间2019年已经接近尾声,迎接我们的将是崭新的2020年,在即将过去的2019年里,科学家们在机体衰老研究领域取得了很多显著的成果,本文中,小编就对本年度科学家们在该研究领域取得的重磅级研究成果进行整理,分享给大家!图片来源:Fouquerel et al. (2019). Mol

抗衰老研究:从基因到药物

 自古以来,人类就追求青春常在,生命不老,历史上曾出现过许多寻找“长生不老”秘方以及炼制“仙丹灵药”的活动。时至今日,人们 已认识到“长生不老”只是一个美梦,但是延缓衰老却是可能实现的,寻找抗衰老药物的脚步一直没有停息。随着科学技术的进步,科研的触角已经深入到了基因水平,进而发现了更多药物

癌症基因疗法亮点频现 用好基因修复坏基因

  当前,探索各种有效而实用的抗癌方法已成为研究人员和临床医生研究的重点,同时也成为患者关注的焦点。毫无疑问,2010年的癌症治疗在基因疗法方面出现了一些亮点,如果假以时日,基因疗法将成为癌症治疗的实用技术。   核糖核酸干扰显神威   癌症的基因疗法有很多,其中有一种更显示了独特的魅力,这就是

人类抗衰老新方法:人工干预“自噬”

  据每日邮报报道,一项里程碑意义的研究为人类抗衰老找到新的方法。加州理工学院和加州大学洛杉矶分校的一项研究为逆转和延缓衰老铺平了道路。线粒体是细胞呼吸和生命活动的重要场所,被称为“细胞电池”。随着年龄的增长,DNA会分解和突变,线粒体就会出现各种问题,进而形成身体症状。通过一种开创性的手法,科学家

癌细胞有哪些特性,为何能在人身上霸道横行?

  【Technews科技新报】癌症是中国人最重要的死因,人们往往“谈癌色变”。有些人生活过度紧张怕东怕西,深恐癌症上身;有些人干脆避而不谈,以为自己绝不可能得到癌症。事实上,多数癌症都是逐渐形成的“慢性病”,许多癌症患者的存活率还较末期糖尿病、心血管疾病患者高。因此面对癌症,人们应尽量理性对待。癌

Science倡议小儿癌症精准治疗

  过去几十年,人们已经对成人癌症的遗传学有了更多了解。但是,儿科癌症临床应用已经远远落后于成年人。在著名的Science杂志,来自洛杉矶儿童医院的Jaclyn Biegel博士和加州大学旧金山研究所的Alejandro Sweet-Cordero博士调查了儿童癌症的遗传学景观,并提出利用基因组信息

《Nature》 小酌怡情大错特错!酒精代谢物诱使干细胞突变!

  关于酒精的危害,《Nature》今天发表的这篇文章会再度刷新你的认知。  这篇文章中研究人员阐明了乙醛(一种内源性和醇衍生代谢物)会引起的DNA损伤和突变现象。这种损伤导致DNA双链断裂,这些细胞中DNA损伤的积累促进了细胞自身的降解,而这种损伤的引起的错误修复会引发恶性肿瘤。  酒精的消耗导致

2017年5月CRISPR/Cas亮点盘点

  基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。  

Nature:DNA修复新模式解答转录争议

  紫外线和其他环境因素不多对我们的DNA造成破坏,可以说我们的健康在很大程度上依赖于细胞发现和修复DNA损伤的能力。纽约大学医学院的一项新研究展示,RNA聚合酶负责在基因组中搜寻DNA损伤,并招募盟友对其进行修复。这一机制能够有效减少突变,帮助人体控制癌症和其他疾病。这项研究由Evgeny N

早衰研究新发现:松弛DNA的会导致衰老

  werner综合征是一种罕见疾病,患者会表现出类似早衰的症状——通常在20多岁就头发花白,30几岁出现白内障和骨质疏松症,60岁前死亡。  如今,研究人员首次得到了携带能够导致此类疾病症状的基因缺陷的多功能干细胞。他们的分析表明,缠绕松弛的DNA引发了werner综合征所表现的身体机能的快速下降

科学家通过DNA基因分析 或可揭开青春不老之谜

  据媒体报道,人们把布鲁克-格林伯格称作真实的彼得潘,这个小女孩永远都长不大。在4岁的时候,她就停止了生长,身体和智力都保持在儿童时期的状态。她后来由于生病去世,年仅20岁。科学家一直在对她进行研究,并试图了解她的状态。  据悉,布鲁克1993年出生于巴尔的摩,她遭受了诸多医学病症,其中

你的皮肤,能抵挡多少外界污染?

  在亚洲的一些大城市里,街道总是雾蒙蒙的。为了防止吸入空气中的污染物,许多人选择戴上口罩。德国莱布尼茨环境医学研究所主任、皮肤科医生Jean Krutmann从十几年前便开始思考一个问题:这些污染物是否也会伤害人体最大的器官——皮肤。  他和同事决定从亚洲和欧洲着手,先将目标瞄准当地一些长期暴露在

《eLife》:明星抑癌基因p53如何发挥作用?

  p53为肿瘤抑制蛋白(也称为p53蛋白或p53肿瘤蛋白),属于最早发现的肿瘤抑制基因(或抑癌基因)之一。p53蛋白能调节细胞周期和避免细胞癌变发生。因此,p53蛋白被称为基因组守护者。总而言之,其角色为保持基因组的稳定性,避免突变发生。在遏制肿瘤细胞生长、DNA修复、以及细胞程序化死亡等方面扮演

盘点:Nature推荐的2月研究亮点Top10

  【1】Scientific Report:利用大数据(“Big Data”)提高流感预测  美国患季节性流感感染的人口占到5—20%,每年造成20多万住院治疗的病例。分析哪些地区有较高的感染风险,预测感染水平都可以帮助针对性的流感预防和治疗。而研究人员将大数据,以谷歌流感趋势(Google Fl

细胞内“突变时钟”能告诉你何时会得癌

  滴答,滴答。我们老得有多快?我们是否会得癌?答案或许可以由人体几乎每个细胞内都有的两个“突变时钟”来告诉我们。英国科学家的这一发现将有助于深入了解癌症的起因,掌握如何健康老去的秘诀。而如果能让这些“时钟”走慢点,就有可能改变癌症的进程,甚至延缓衰老。  人体中有些基因突变似乎以恒定的速度在逐年累

美日研究发现癌症研究新机制

  随着老龄化的加剧,癌症的发生率以及死亡率都急剧攀升,这使得癌症研究变得更加迫切。对于癌症生物学的研究让科学家们了解更多癌症的真相,比如说多种遗传变异,多种表观遗传学变异等等,诱发癌症的机制变得繁杂而晦涩难懂。   近期来自美国和日本的两个研究组从不同方面分别揭示了癌症的新作用机制:肠道内的一种

Nature:好睡眠让干细胞保持年轻

  近日来自德国的研究人员发现,环境压力是推动成体造血干细胞中DNA损伤的一个主要因素,由此得出结论良好的夜间睡眠可以让你的干细胞保持“年轻”。他们的研究成果发表在《自然》杂志上。  正常情况下,许多不同类型的组织特异性成体干细胞,包括造血干细胞都处于一种静息状态,它们很少分裂,对能量的需求极低。该

长期运动对老年小鼠骨骼肌线粒体复合物的影响

摘要 目的:研究长期运动训练对老年小鼠骨骼肌线粒体复合物 I 和复合物 Ⅳ活性的影响,并探讨其机制。方法:以C57 BL/6J雄性小鼠跑转笼为运动方式,通过分光光度法和极谱氧电极法测定线粒体复合物 I和复合物 Ⅳ的活性。 结果:随着小鼠年龄的增长,骨骼肌线粒体复合物 I (NADH脱氢酶)活性显著下