南科大在自由基稳定化钠离子电池电极材料方面取得进展
近日,南方科技大学材料科学与工程系卢周广课题组在英国自然出版集团旗下期刊《自然-通讯》(Nature Communications)在线发表了题为Highly durable organic electrode for sodium-ionbatteries via a stabilized α-C radical intermediate 的学术论文,提出了通过自由基稳定化提升钠离子电池有机电极材料的新概念。 有机钠离子电池电极材料由于其具有透明、柔性、资源丰富及易于功能化等特点而成为当前商业锂离子电池电极材料的潜在替代品,应用于可穿戴电子器件和大规模储能等领域。目前通常研究的芳香醌、聚酰亚胺、希夫碱和羧酸盐化合物等有机电极材料不仅容量较低,而且存在循环寿命短等关键问题。因此,开发高容量和高稳定性钠离子电池有机电极材料具有重要的研究价值及应用前景。研究表明有机电极中C=O,C=N,和C-S-S-C等不饱和基团被还原后生成......阅读全文
简述自由基的作用
由于自由基含未配对的电子,所以极不稳定(特别是羟自由基),因此会从邻近的分子(包括脂肪、蛋白质、和DNA)上夺取电子,让自己处于稳定的状态。这样一来,邻近的分子又变成一个新的自由基,然后再去夺取电子…。如此连锁反应的结果,让细胞的结构受到破坏,造成细胞功能丧失、基因突变、甚至死亡。 但是少量并
什么是自由基反应?
自由基反应又称游离基反应,是自由基参与的各种化学反应。按共价键均裂方式进行的有机反应称为自由基反应。自由基电子壳层的外层有一个不成对的电子,对增加第二个电子有很强的亲和力,故能起强氧化剂的作用。大气中较重要的为OH-自由基,能与各种微量气体发生反应。在光化学烟雾形成的化学反应中,有许多自由基反应,在
中国自由基化学奠基人刘有成:为祖国耕耘自由基
作为中国自由基化学奠基人,刘有成毕生为国,堪为典范。回顾他经历丰富的一生,不仅可以看出他为中国的科学和教育事业作出了突出贡献,而且可以发现他坚定不移的爱国情怀、求真务实的工作态度和勇于创新、乐于奉献的科学精神。 1995年刘有成(前排左二)在中科大接待诺贝尔化学奖得主R.Mar
DMF有机体系腐蚀PH计的电极,该怎么办
一般情况下PH计是保存在缓冲溶剂里的啊,只有需要测的时候才拿出来的。有两个标准品用来校正的。
上海有机所在周环酶催化机制研究中取得新进展
中国科学院上海有机化学研究所生命有机化学国家重点实验室的周佳海课题组和UCLA的唐奕课题组合作,解析了高分辨率的LepI及其与底物类似物或产物4、5、6的复合物晶体结构,并通过与UCLA的Kendall Houk课题组合作开展理论计算工作,系统地阐释了LepI催化的分子机制。该工作于2019年7
广盐种的定义
中文名称广盐种英文名称euryhaline species定 义能忍受盐度大幅度变化的生物。这类生物是沿岸或河口的典型生物。应用学科海洋科技(一级学科),海洋科学(二级学科),海洋生物学(三级学科)
广枣的鉴别
(1) 本品粉末棕色。内果皮石细胞呈类圆形、椭圆形、梭形、长方形或不规则形,有的延长呈纤维状或有分枝,直径14~72μm,长25~294μm,壁厚,孔沟明显,胞腔内含淡黄棕色或黄褐色物。内果皮纤维木化,多上下层纵横交错排列,壁厚或稍厚,有的胞腔内含黄棕色物。外果皮细胞表面观呈类多角形,胞腔内含棕
广枣的介绍
广枣为漆树科植物南酸枣的干燥成熟果实。秋季果实成熟时采收,除去杂质,干燥。呈椭圆形或近卵形,长2~3cm,直径1.4~2cm。具有行气活血,养心,安神,抗心肌缺血,保护心功能等作用,用于气滞血瘀,胸痹作痛,心悸气短,心神不安。
锂离子电池材料聚吡咯的制备及原理
聚吡咯可由吡咯单体通过化学氧化法或者电化学方法制得。化学聚合是在一定的反应介质中通过采用氧化剂对单体进行氧化或通过金属有机物偶联的方式得到共轭长链分子并同时完成一个掺杂过程。该方法的合成工艺简单,成本较低,适于大量生产。使用化学法制备聚吡咯时的产物一般为固体聚吡咯粉末,即难溶于一般的有机溶剂,机
锂电池材料聚吡咯的制备及其原理
聚吡咯可由吡咯单体通过化学氧化法或者电化学方法制得。化学聚合是在一定的反应介质中通过采用氧化剂对单体进行氧化或通过金属有机物偶联的方式得到共轭长链分子并同时完成一个掺杂过程。该方法的合成工艺简单,成本较低,适于大量生产。使用化学法制备聚吡咯时的产物一般为固体聚吡咯粉末,即难溶于一般的有机溶剂,机
收藏|据说是水处理行业最领先的10项技术
1.膜技术 膜分离法常用的有微滤、纳滤、超滤和反渗透等技术。由于膜技术在处理过程中不引入其他杂质,可以实现大分子和小分子物质的分离,因此常用于各种大分子原料的回收。 如利用超滤技术回收印染废水的聚乙烯醇浆料等。目前限制膜技术工程应用推广的主要难点是膜的造价高、寿命短、易受污染和结垢堵塞等
原位自由基检测——顺磁共振波谱对氮自由基性质的研究
近年来,电化学合成领域发展十分迅速,为有机合成化学提供了一条新路径。在电化学合成反应中,反应物可以通过单电子转移过程(Single Electron Transfer, SET)直接从电极上得到一个电子(阴极还原过程)或失去一个电子(阳极氧化过程)。“自由基中间体”在大部分电化学合成反应中都扮演
科学家开发金属催化新策略
中科院上海有机化学研究所刘国生团队通过发展金属催化的自由基接力新策略,成功地实现了铜催化苄位碳氢键的不对称氰化反应,以最短的路线合成了手性腈类化合物。该成果近日在线发表于《科学》。 刘国生团队一直致力于自由基化学的选择性控制研究。研究人员提出将反应中的碳自由基中间体转化为金属有机物种实现选择性
政协委员周健民揭秘:有机肥污染物比化肥还多
不打农药、不施化肥,这些卖点抬高了“有机蔬菜”的身价。全国政协委员、江苏省政协副主席、中科院南京分院院长周健民昨日接受扬子晚报采访时表示,须警惕有机肥中的各种污染。 周健民委员今年特别关注环境问题,在谈到目前流行的“有机蔬菜”,他作为一名土壤研究学者,表示有话要说,因为公众在
卢晓东:不争状元争什么
今年5月11日笔者在《大学周刊》撰文《破除状元招生观,清华北大谁为先》,衷心希望两校在今年的招生中不再“骄傲地宣布,他们录取了各省区多少个状元”,以此“为中国教育的改革发展作出与其目前地位和人们的期待相称的贡献”。然而事与愿违,“杯具”仍然发生了,两校骄傲地公布的状元人数加起来竟然超过
卢永根的选择与传承
人的一生,总是面临诸多选择。 对中科院院士、华南农业大学(下称华农)教授卢永根来说,生逢大时代,历经数十载风雨沧桑,其面临的选择之多,更是常人难以想象。 1949年,新中国成立,卢永根本可以选择留在香港中产阶级的家庭中,做富贵公子,但他选择回到百废待兴、一河之隔的广州,做一个普通的穷学生;
卢晓东:反思“因材施教”
教育中有两个元素,一是老师的“教”,二是学生的“学”。对这两个因素的关系进行分析,我们会发现教育的目的不是“教”,而是如何促进学生“学”;教师的“教”只有通过学生的“学”才能真正转化为教育生产力。也就是说,学生的“学”是决定因素。陶行知先生将这种关系概括为“好的先生不是教书,不是教学生,乃是教学
PH电极—复合电极
实验室使用的复合电极主要有全封闭型和非封闭型两种,全封闭型比较少,主要是以国外企业生产为主。复合电极使用前首先检查玻璃球泡是否有裂痕、破碎,如果没有,用pH缓冲溶液进行两点标定时,定位与斜率按钮均可调节到对应的pH值时,一般认为可以使用,否则可按使用说明书进行电极活化处理。活化方法是在4%氟化氢
自由基是如何发现的?
历史上第一个被发现和证实的自由基是由摩西·冈伯格在1900年于密歇根大学发现的三苯甲基自由基,该自由基在隔绝空气的条件下发生二聚,形成“六苯基乙烷”简单的有机自由基,如甲基自由基、乙基自由基,是在20年代通过气相反应证实的。有机自由基作为活泼中间体,是在30年代由D.H.海伊、W.A.沃特斯和M.S
自由基对人体的危害
(1)削弱细胞的抵抗力,使身体易受细菌和病菌感染;(2)产生破坏细胞的化学物质,形成致癌物质;(3)阻碍细胞的正常发展,干扰其复原功能,使细胞更新率低于枯萎率;(4)破坏体内的遗传基因(DNA)组织,扰乱细胞的运作及再生功能,造成基因突变,演变成癌症;(5)破坏细胞内的线粒体(能量储存体),造成氧化
自由基攻击人体的途径
自由基是无处不在的,自由基对人体攻击的途径是多方面的,既有来自体内的 ,也有来自外界的。当人体中的自由基超过一定的量,并失去控制时,这些自由基就会乱跑乱窜,去攻击细胞膜,去与血清抗蛋白酶发生反应,甚至去跟基因抢电子,对我们的身体造成各种各样的伤害,产生各种各样的疑难杂症。人类生存的环境中充斥着不计其
自由基的形成方式
在一个化学反应中,或在外界(光、热、辐射等)影响下,分子中共价键断裂,使共用电子对变为一方所独占,则形成离子;若分裂的结果使共用电子对分属于两个原子(或基团),则形成自由基。有机化合物(Organic compounds)发生化学反应时,总是伴随着一部分共价键(covalent bond)的断裂和新
自由基对细胞的危害
(1)削弱细胞的抵抗力,使身体易受细菌和病菌感染;(2)产生破坏细胞的化学物质,形成致癌物质;(3)阻碍细胞的正常发展,干扰其复原功能,使细胞更新率低于枯萎率;(4)破坏体内的遗传基因(DNA)组织,扰乱细胞的运作及再生功能,造成基因突变,演变成癌症;(5)破坏细胞内的线粒体(能量储存体),造成氧化
体内自由基的作用介绍
由于自由基含未配对的电子,所以极不稳定(特别是羟自由基),因此会从邻近的分子(包括脂肪、蛋白质、和DNA)上夺取电子,让自己处于稳定的状态。这样一来,邻近的分子又变成一个新的自由基,然后再去夺取电。如此连锁反应的结果,让细胞的结构受到破坏,造成细胞功能丧失、基因突变、甚至死亡。但是少量并且控制得宜的
关于自由基的来源介绍
1、自动氧化(体内一些分子,例如儿茶酚胺、血红蛋白、肌红蛋白、细胞色素C和巯基在氧化的过程中会产生自由基。) 2、酶促氧化(一些经由酶催化的氧化过程会产生自由基。) 3、呼吸带入(吞噬细胞在清除外来微生物时会产生自由基。) 4、药物(例如某些抗生素、抗癌药物会在体内产生自由基,特别是在高氧
体内自由基的来源简介
1. 自动氧化(体内一些分子,例如儿茶酚胺、血红蛋白、肌红蛋白、细胞色素C和巯基在氧化的过程中会产生自由基。)2.酶促氧化(一些经由酶催化的氧化过程会产生自由基。)3. 呼吸带入(吞噬细胞在清除外来微生物时会产生自由基。)4. 药物(例如某些抗生素、抗癌药物会在体内产生自由基,特别是在高氧状态。)5
自由基的形成方式
在一个化学反应中,或在外界(光、热、辐射等)影响下,分子中共价键断裂,使共用电子对变为一方所独占,则形成离子;若分裂的结果使共用电子对分属于两个原子(或基团),则形成自由基。有机化合物(Organic compounds)发生化学反应时,总是伴随着一部分共价键(covalent bond)的断裂和新
自由基的形成反应介绍
自由基又称游离基,是具有非偶电子的基团或原子,它有两个主要特性:一是化学反应活性高;二是具有磁矩。在一个化学反应中,或在外界(光、热等)影响下,分子中共价键分裂的结果,使共用电子对变为一方所独占,则形成离子;若分裂的结果使共用电子对分属于两个原子(或基团),则形成自由基。包括以下产生方式:①引发剂引
自由基反应的基本介绍
自由基反应又称游离基反应,是自由基参与的各种化学反应。按共价键均裂方式进行的有机反应称为自由基反应。 [1] 自由基电子壳层的外层有一个不成对的电子,对增加第二个电子有很强的亲和力,故能起强氧化剂的作用。大气中较重要的为OH-自由基,能与各种微量气体发生反应。在光化学烟雾形成的化学反应中,有许多