Antpedia LOGO WIKI资讯

微纳机器人助力新药研发

中国科学院沈阳自动化研究所微纳米课题组在微纳机器人与生物医学交叉领域的最新成果《微组织3D 生物制造的新方法》,近日以封面论文形式发表于《微尺度》杂志。 生物医药领域不同于传统制造业,其操作对象从结构化的零部件转变为非结构化的活体细胞,操作环境也由常态大气转变为生理液态环境,这对机器人技术的感知、驱动和控制提出了诸多挑战。沈阳自动化所科研人员与生命科学领域专家合作,将机器人技术与生物医药相结合,在新药研发领域为机器人开辟新的应用领域。 此次发表的研究主要针对药物筛选对人体微组织环境的需求。在新药研发过程中,药物毒性和耐药性测试是至关重要的一步,现有单细胞筛选模型存在药效准确率低、毒性检测效果差等问题,其主要原因是单个细胞难以准确模拟人体环境。对此,课题组提出了微小组织的在线制造和机器人同步装配策略,可根据需求在线制造不同种类的三维细胞微组织,并能同时采用微纳机器人技术进行在线组装,进而形成类人体生理环境的多细胞复杂组织连......阅读全文

沈阳自动化所在微纳制造和微纳生物领域取得系列进展

  信息-生物-纳米是微纳制造产业和单分子生命科学研究的热点。其中微纳米观测、操控和制造技术是支撑微纳米科技走向应用的基础,是促进信息技术与生命科学实现跨越式发展的使能技术。中国科学院沈阳自动化研究所微纳米组长期以来开展多学科交叉研究,推进信息、生物、纳米技术的融合与发展,在微纳制造和微纳生物领域取

微纳机器人助力新药研发

  中国科学院沈阳自动化研究所微纳米课题组在微纳机器人与生物医学交叉领域的最新成果《微组织3D 生物制造的新方法》,近日以封面论文形式发表于《微尺度》杂志。  生物医药领域不同于传统制造业,其操作对象从结构化的零部件转变为非结构化的活体细胞,操作环境也由常态大气转变为生理液态环境,这对机器人技术的感

微纳3D打印技术制造微流控芯片

  微流控芯片是一门在微米尺度下研究流体的处理与操控的技术,微流控技术从最初的单一功能的流体控制器件发展到了现在的多功能集成、应用非常广泛的微流控芯片技术,在分析化学、医学诊断、细胞筛选、基因分析、药物输运等领域得到了广泛应用。相比于传统方法,微流控技术具有体积小、检测速度快、试剂用量小、成本低、多

福田敏男:微纳机器人之父

   作为全球首位提倡微纳操作机器人的开拓者、领军者,“培养更好的科学家,踏实从事科研的人”,是福田敏男来到中国,除了科研之外,正在努力的事。  在电影《神奇的旅程》中,有这样一组镜头。科学家被缩小,注射入人体内完成手术。然而在未来,同样的场景也许不再只存在于科幻电影,随着微纳技术的发展,某一天微纳

新型光刻机提升微纳实用制造水平

  中科院光电技术研究所微电子专用设备研发团队,近日自主研制成功紫外纳米压印光刻机。该机器将新型纳米压印高分辨力光刻技术与紫外光刻技术有机结合,成本仅为国外同类设备的1/3,并在同一加工平台上实现了微米到纳米级的跨尺度图形加工,使我国微纳实用制造水平迈上新的台阶。  光刻机是实现微纳图形加工的专用高

科学家利用生物细菌为本体研发新型微纳机器人

   微纳机器人是机器人领域的前沿方向,在无创手术、药物输运、微纳制造等方面具有广泛的应用前景,吸引了全球众多科学家的研究兴趣。尽管经过数十年的发展,微纳机器人已经取得了很大的进步,但是受机器人本体尺寸、材料性能等因素的影响,微纳机器人的能源供给、驱动控制、作业灵活性等问题依然是当前面临的关键挑战。

微纳制造与测试技术 联合实验室成立

  4月7日,微纳制造与测试技术国际合作联合实验室在西安交通大学曲江校区揭牌成立。据悉,该实验室将聚焦国际学术前沿,服务国家重大需求,整合国际优势资源,通过微纳制造科学与技术、微纳传感与测试技术、微纳功能材料与器件、微纳材料服役行为等四个领域的国际合作,力争实现原创性科学技术的重大突破,汇聚和培养一

微纳机器人在多维细胞装配领域获应用成果

  近日,国际学术期刊《芯片实验室》(Lab on a Chip)以后封面形式,刊载了来自于中国科学院沈阳自动化研究所微纳米课题组的最新研究成果,科研人员利用机器人化的微纳操控和组装技术在多维细胞装配领域取得应用进展。  工程技术与生命科学的融合已成为引领科技创新前沿的热点方向之一,将细胞排列、组装

上海微系统所等在微纳功能表面及制造研究领域取得突破

  表面润湿特性是表面界面科学中的的重要研究内容之一。研究和制备不同性质的浸润性表面,可加深对表面/界面物理的理解,增强各种材料表面的功能性能以及扩展材料的应用范围。中国科学院上海微系统与信息技术研究所无线传感网事业部副研究员周晓峰与香港城市大学副教授王钻开,一直以来在微纳仿生功能表面研究及制造领域

微流控纳升移液机器人研究取得进展

  近日,中国科学院深圳先进技术研究院微纳系统与仿生医学研究中心研究员陈艳团队和加州大学戴维斯分校教授潘挺睿、Cheemeng Tan团队合作研发出新型微流控纳升移液机器人,实现了纳升级液体的自动化高精度分配。相关研究结果以Microfluidic Cap-to-Dispense (μCD): A