合肥研究院在一维超晶格纳米结构研究中取得系列进展

近期,中国科学院合肥物质科学研究院固体物理研究所研究员费广涛课题组在一维超晶格结构研究中取得系列进展,可控制备出了几种具有清晰界面的双金属一维超晶格结构,基于这种结构开展了一系列基础科学问题的研究,相关研究成果分别发表在Scientific Reports,Journal of Materials Chemistry C,CrystEngComm,Nanotechnology 等期刊上,并获多项授权发明ZL。 超晶格(superlattice)是指两种晶格匹配很好的材料交替生长的周期性结构。超晶格结构中两种成分间界面的存在使其具备了很多新奇的性质,如巨磁阻效应、优良的热电性能等,受到人们的广泛关注。 近年来,该课题组一直致力于超晶格结构的研究,之前该课题组博士薛方红就使用双电位脉冲沉积技术在多孔氧化铝模板中制备了热电材料Bi/Sb超晶格纳米线(J. Am. Chem. Soc., 2005, 127(44): 15348......阅读全文

每平方英寸能容115太比特数据-单原子磁体存储设备诞生

金属铱—石墨烯基底上的镝单原子超晶格阵列。   科技日报北京11月23日电 (记者聂翠蓉)据物理学家组织网近日报道,瑞士洛桑理工学院的物理学家用单个原子磁体在石墨烯上铺装成超级晶格结构,成功研制出基于单原子的存储装置原型。该装置数据存储密度达到每平方英寸115太比特(TB),预示着新一代存储介质即将

合肥研究院在五氧化二钽晶格结构研究中取得进展

  近期,中国科学院合肥物质科学研究院固体物理研究所物质计算科学研究室研究员杨勇在五氧化二钽晶格结构研究方面取得新进展,相关结果发表在Physical Review Materials (Phys. Rev. Materials, 2, 034602 (2018))上。  五氧化二钽 (Ta2O5)

MOF纳米粒子和DNA的胶体晶体工程|Nature-Commun.

  核酸修饰纳米粒子的胶体晶体工程是制备三维超晶格的一种有效方法,在催化、传感、光子学等领域都有广泛的应用。迄今为止,研究的构件主要基于金属、金属氧化物、硫属半导体和蛋白质。在这里,美国西北大学Chad A. Mirkin教授等人展示了被寡核苷酸功能化的金属有机框架纳米粒子(MOF NPs)可以被编

利用三维飞秒激光光刻技术制备纳米晶体结构

  材料本身的光学性质不仅取决于其化学性质,还取决于其亚波长结构。由此而来的诸如光子晶体和超材料等,拓展了人们对于光学结构和光学材料的认识,展现出不同于自然材料的新奇现象和功能。然而,在过去的研究中,光学晶体的纳米结构集中于材料的二维表面。这是因为应力诱导的裂纹形成和传播使得高精度的三维体积加工具有

构建具有精确空间组织的有机超结构微米线

  苏州大学 Nat. Commun.:  【背景介绍】精确合成具有准确空间结构的一维(1D)微/纳米线具有重要的科学意义和工业应用价值。目前,无机或金属微/纳米线的精细合成通过各种方法和机制实现了对结构、尺寸和组分的精确控制。需注意,复杂的微/纳米结构通常表现出优异的物理/化学性质,使得它们成为高

纳米结构启动质谱技术

  质谱在检测生物分子方面有很大潜力,但现有方法仍存在一些缺陷,灵敏度不够高和需要基质分子促使分析对象发生离子化就是其中之二。比如说,需要溶解或者固定在基质上的方法检测代谢物,较易错判,因为这些代谢物与那些基质常常看上去都一样。另外基于固定物基质的系统也不允许研究人员精确的判断出样品中某一分子到底来

《Science》公布人类骨骼纳米结构

  约克大学和帝国理工学院的研究小组利用先进的人体骨矿物纳米水平3D成像技术,首次展示了骨矿物结晶的分层结构,我们的骨骼正是由这些纳米级结构组合搭建而成。  想象一下,加速奔跑的猎豹和身形庞大的大象,生物骨骼具备良好的韧性和力量。  骨骼的性质可以归因为它的层次结构。然而,骨的主要成分是矿物质和蛋白

巧用沾笔纳米光刻技术获得超材料

沾笔纳米光刻工艺示意图   你或许没有想过将坚硬的金属或半导体与柔软的有机物或生物产品结合起来会是何种情景,不过美国科学家可以告诉你的是,他们获得了自然界从没有见过的混合材料,而这些混合材料在医学和制造业中将具有惊人的应用前景。   美国佛罗里达州立大学综合纳米研究所(INSI)的科学家

瑞士CSM超纳米压痕仪主要特点

UNHT型超纳米压痕测试仪是市场上现有的zui精准的纳米与超纳米尺度动态压痕测试仪器。在小尺度蠕变、软材料、生物材料、超薄膜、弛豫、弹性体等应用领域性能尤为突出。正弦加载压入模式(Sinus 态机械分析模式)正线加载入模式可以通过其动态的测量过程给出材料更为完整的力学信息,例如材料的粘弹性。这种加载

纳米技术赋予羊毛超亲水功能

  近日,美国化学会新闻周刊(ACS News Service Weekly PressPac)以“化学使天然‘神奇织物’羊毛更加神奇”(Chemistry makes the natural “wonder fabric” — wool — more wonderful)为题报道和评述了京港两

瑞士CSM超纳米压痕仪技术参数

UNHT型超纳米压痕测试仪是市场上现有的zui精准的纳米与超纳米尺度动态压痕测试仪器。在小尺度蠕变、软材料、生物材料、超薄膜、弛豫、弹性体等应用领域性能尤为突出。正弦加载压入模式(Sinus 态机械分析模式)正线加载入模式可以通过其动态的测量过程给出材料更为完整的力学信息,例如材料的粘弹性。这种加载

中科院物理所时间分辨电子显微镜研制成功

  10月30日,中科院条件保障与财务局组织专家对物理所李建奇课题组承担的2012年中科院科研装备研制项目“时间分辨透射电子显微镜”进行了现场验收。项目技术测试专家组检查了设备的现场运行情况,进行了技术测试。项目验收专家组听取了项目组的工作报告、财务报告、用户使用报告以及测试报告,审核了相

国家纳米科学中心分级纳米结构研究取得重要进展

构成网格的结构单元本身就是网格  在分级纳米结构的制备中,采用最多的方法是在已有的一维纳米结构(例如纳米线)表面继续沉积或者生长这些一维的结构,例如,螺位错驱动的PdS纳米松树;而基于二维纳米结构单元的分级纳米结构的研究尚不多见。和一维纳米结构相比,二维纳米结构能像剪纸那样被“雕镂”

新皮米光子波能在硅半导体内传播

美国研究人员发现了新的皮米尺度波,这种波可以在硅等半导体中传播。研究人员指出,在半导体材料中使用皮米光子波有望催生新的功能性光学器件,应用于量子技术领域,相关研究发表于最新一期《物理评论应用》杂志。 最新研究由普渡大学电气和计算机工程副教授祖宾·雅各布博士领导,他说:“微观这个词源于微米,1微米

试验新方法!单颗磨粒纳米深度超精密磨削

  近日,大连理工大学张振宇教授及其博士生王博、崔俊峰等承担国家自然科学基金委创新研究群体“精密制造理论与技术基础研究”在硅的变形诱导制造新型纳米结构方面取得重要进展,在《纳米通讯》(Nano Letters) 期刊发表文章。  硅主导了消费电子、太阳能电池、光伏产业、半导体器件,成为世界上最大的产

超净工作台结构特点

超净工作台是为了适应现代化工业、光电产业、生物制药以及科研实验等领域对局部工作区域洁净度的需求而设计的。其工作原理为:通过风机将空气吸入预过滤器,经由静压箱进入过滤器过滤,将过滤后的空气以垂直或水平气流的状态送出,使操作区域达到百级洁净度,保证生产对环境洁净度的要求。         超净工作台根据

纳米结构扭曲程度首次实现控制

美国密歇根大学领导的一个研究小组显示,由纳米颗粒自组装而成的微米大小的“蝴蝶结领结”,可形成各种不同的扭曲形状,并能被精确控制。这一进展为轻松生产与扭曲光相互作用的材料开辟了道路,为机器视觉和药物生产提供了新的工具。相关论文15日发表在《自然》杂志上。虽然生物学上充满了像DNA这样的扭曲结构,也就是

光刻技术首次绘出银纳米结构

  德国柏林亥尔姆茨材料和能源研究中心与联邦材料测试与研究机构合作,首次在银材料底层上完成光刻纳米结构,为未来光计算机数据处理、新型电子器件制造开辟了新的途径。这项成果刊登在美国化学学会的《应用材料和界面》杂志上。   要想在材料表面获得精细结构图样,最佳选择是采用电子显微镜扫描技术,利用电子束在其

纳米柱的结构和应用特点

纳米柱(Nanopillar)是纳米结构领域内一种新出现的技术。纳米直径是10的负9次方的纳米结构。共同组合成点阵。它们是一种超材料,即,具有它们的性质是由于人工设计的结构,而不是它们的自然性质。纳米柱有许多应用;主要的有;1.高效太阳板;2.高分辨细胞分析;3.抗细菌表面。

自洁不反光纳米结构玻璃

玻璃zui能被辨认的特点之一是能够反射光线,而美国麻省理工学院研究人员在玻璃表面创建出一种纳米结构,使其几乎消除了反射。由于它没有眩光,而且表面的水滴能如小橡胶球一样反弹,令人几乎无法辨认出这是玻璃。该研究结果刊登于美国化学会的《ACS纳米》期刊上。该玻璃的表面结构为高1000纳米、基底宽200纳米

超灵敏纳米探测装置能“听”到细胞跳动

  美国加州大学圣地亚哥分校研究人员开发出一种超灵敏探测装置,其灵敏度要高出原子力显微镜10倍,能够收集并量化微弱的力和声音。他们15日发表在《自然·光子学》杂志上的论文称,这一装置可以感受到细菌移动产生的力量,能“听”到心肌细胞跳动的声音。   该装置是一种直径只有人类头发直径百分之一的纳米光

超灵敏纳米探测装置能“听”到细胞跳动

美国加州大学圣地亚哥分校研究人员开发出一种超灵敏探测装置,其灵敏度要高出原子力显微镜10倍,能够收集并量化微弱的力和声音。他们5月15日发表在《自然·光子学》杂志上的论文称,这一装置可以感受到细菌移动产生的力量,能“听”到心肌细胞跳动的声音。该装置是一种直径只有人类头发直径百分之一的纳米光纤

超灵敏纳米探测装置能“听”到细胞跳动

  美国加州大学圣地亚哥分校研究人员开发出一种超灵敏探测装置,其灵敏度要高出原子力显微镜10倍,能够收集并量化微弱的力和声音。他们5月15日发表在《自然·光子学》杂志上的论文称,这一装置可以感受到细菌移动产生的力量,能“听”到心肌细胞跳动的声音。  该装置是一种直径只有人类头发直径百分之一的纳米光纤

日研制测量纳米尺寸的超精密尺子

  日本关西学院大学一个研究团队20日宣布,他们研发出一种超精密尺子,可用于测量纳米级别的尺寸。   这个团队来自关西学院大学理工学系。他们研制的这种尺子以硬度仅次于钻石的碳化硅为主要材料。碳化硅质地坚硬,很难加工,研究人员为此专门开发出一种新的加工技术。他们把碳化硅放入超真空环境

科学家合成新型纳米材料硬度超钻石

这是一个直径2毫米的纳米孪晶立方氮化硼材料  北京时间2月1日消息,据英国《新科学家》杂志网站报道,传统上认为钻石是自然界硬度最高的物质,也因此常常会被用在工业钻头上。但科学家们近日合成了一种硬度超越钻石的新材料。  来自美国芝加哥大学,新墨西哥大学,中国燕山大学,吉林大学以及河北工

台湾研发出全球最小9纳米超节能内存

  据香港中通社报道,台湾“国研院”纳米(台称“奈米”)组件实验室领先全球,开发出全球最小的9纳米功能性电阻式内存(R-RAM)数组晶胞;这个新内存在几乎不需耗电的情况下,1平方厘米面积内可储存1个图书馆的文字数据,将让信息电子产品的轻薄短小化有无限发挥的可能性,这项技术预计在5到10年内

德国发明超微硅纳米谐振器

    德国伊尔姆瑙理工大学23日报告说,该校研究人员已研制出硅纳米谐振器,这是目前世界上最小的硅纳米谐振器之一。这一发明可进一步提高纳米级微观结构成像的分辨率,对医学等领域的研究具有重要意义。     伊尔姆瑙理工大学制成的这种纳米谐振器的

等离子体纳米天线超表面加速光束

  最近的研究表明,经过专门设计的光束具有在真空中沿弯曲路径传播的能力。目前用于产生加速光束的方法使用的是相位调制器和透镜,这种设备的长度为几十厘米或更长。这严重限制了其在各种材料下的适用性。本文使用由等离子体纳米天线组成的超表面来加速玻璃内部的光束。这种超表面能够生成高度弯曲的曲率半径为几百微米的

单晶硅属于什么立方晶格

金刚石结构,属于体心立方晶格,倒格子是面心立方!

TEM晶格像和相位衬度

晶格像和相位衬度我们一般用的TEM mode就是明暗场像,由于球差的作用很强,而且如果要形成真正意义上的原子像的话,色差,像散以至于慧差,在5个埃左右会严重减弱分辨率,所以通常的TEM是无法形成原子像的。但是当放大倍数到达一定程度的时候,我们的图像会出现相位称度。所谓相位衬度,就是电子波在经过样品的