Antpedia LOGO WIKI资讯

德国发明超微硅纳米谐振器

德国伊尔姆瑙理工大学23日报告说,该校研究人员已研制出硅纳米谐振器,这是目前世界上最小的硅纳米谐振器之一。这一发明可进一步提高纳米级微观结构成像的分辨率,对医学等领域的研究具有重要意义。 伊尔姆瑙理工大学制成的这种纳米谐振器的宽度只有16纳米,可用作原子力显微镜探针。研究人员称这一成果对原子力显微镜的未来发展和纳米分析具有划时代意义。 原子力显微镜是一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。其关键部件是一个对力非常敏感的微悬臂,悬臂尖端带有一个用来扫描样品表面的微小探针。当探针轻微地接触样品表面时,由于探针尖端的原子与样品表面的原子之间产生极其微弱的相互作用力而使微悬臂弯曲。根据扫描样品时探针的偏离量或振动频率重建三维图......阅读全文

纳米机电系统研究取得系列进展

  记者近日从中国科学技术大学获悉,中国科学院院士郭光灿领导的中科院量子信息重点实验室在基于碳纳米管的纳米机电系统(NEMS)方面取得系列重要进展。该实验室固态量子芯片组教授郭国平研究组与清华大学教授姜开利研究组等合作,成功实现了两个串联碳纳米管谐振器的强耦合、碳纳米管谐振器中两个模式的强耦合,并利

中国科大在纳米机电系统(NEMS)相关研究中取得系列进展

  中国科学院院士、中国科学技术大学教授郭光灿领导的中科院量子信息重点实验室在基于碳纳米管的纳米机电系统(NEMS)方面取得系列进展。该实验室固态量子芯片组郭国平研究组与清华大学姜开利研究组等合作并成功实现了两个串联碳纳米管谐振器的强耦合、碳纳米管谐振器中两个模式的强耦合,并利用这种耦合实现了声子的

传感器的常见类型有哪些

  2020年最xin的传感器,包括用于物联网和可穿戴设备的传感器,它们将很快改变电子行业。不论是检测病人蛋白质水平的无声心脏病检测器,还是警告纠正乘员坐姿错误的椅子,这两种创新方案都是近期发明的。而传感器在电子设备中起着至关重要的作用。事实上,随着科学技术的进步,传感器的应用也在不断扩展。

实验室通过光子晶体和纳米线组合实现光子集成新突破

  LinkedIn与电子一体化的巨大成功故事相反,光子集成技术还处于起步阶段。它面临的最严重的障碍之一是需要使用不同的材料来实现不同的功能,不像电子集成。更复杂的是,许多光子集成所需的材料与硅集成技术不兼容。   到目前为止,在光子电路中放置各种功能纳米线,以达到所需的功能已经表明,虽然完全有可能

微谐振器可对纳米颗粒进行高灵敏度的测量和成像

  日本冲绳科学技术大学(OIST)研究生院的科学家开发了一种基于光的设备,该设备可用作生物传感器,可检测材料中的生物物质,例如食物中的有害病原体。科学家们说,他们的工具,光学微谐振器,比目前的行业标准生物传感器灵敏280倍,后者只能检测颗粒组的累积效应,而不能检测单个分子。  微谐振器是用于单粒子

第一期仪器分析青年论坛活动报道

  科学仪器发展史与仪器创新   中国科学院过程工程研究所分析测试中心 张贵锋 副主任   来自中国科学院过程工程研究所分析测试中心的张贵锋副主任介绍了《科学仪器发展史与仪器创新》的报告。张老师从现代物理与科学仪器关系的角度讲述了科学仪器的发展史,进而讲到科学仪器的发展趋势,最后与大家分

首个纳米级单分子质量实时测定系统问世

  这一成果有效简化了现有分子质量测量程序   美国加州理工学院近日开发出仅有百万分之一米大小的纳米电子机械系统(NEMS)谐振器,可实时测定单个分子的质量。该成果刊登在最近一期的《自然—纳米技术》杂志上。   过去,科学家一直依靠现有质谱分析技术测量分子的质量,程序十分繁琐。首先要将被测样品中

充当质谱仪的“度量标尺”的新仪器问世

  美国加州理工学院近日开发出仅有百万分之一米大小的纳米电子机械系统(NEMS)谐振器,可实时测定单个分子的质量。该成果刊登在最近一期的《自然·纳米技术》杂志上。   过去,科学家一直依靠现有质谱分析技术测量分子的质量,程序十分繁琐。首先要将被测样品中成千上万的分子离子化,使其呈带电状态,然后将这

石墨烯传感器在中红外波段的应用潜力

据麦姆斯咨询报道,美国耶鲁大学(Yale University)和巴塞罗那光子学研究所(ICFO)的研究人员合作开发了一款基于石墨烯的器件,或能制成在中红外光谱工作的新型微尺寸非制冷探测器。目前,在红外“指纹”区(充满了分子特定的光谱信息)工作的商用中红外传感器,通常需要昂贵的光电探测器材料

7月1日《自然》杂志精选

封面故事: 最早的多细胞生命形式   西非加蓬弗朗斯维尔附近黑色页岩内一个大化石层中一系列保存完好的厘米尺度的化石,让我们能有机会一瞥也许是迄今所发现的最早的多细胞生命形式。关于中元古代(距今16亿~10亿年前)之前多细胞生物的证据很稀少、有争议。这些新发现的来自

全球首个全碳等离子激光器问世 未来手机印在衣服上

  澳大利亚莫纳什大学的科学家日前在《美国化学会·纳米》杂志上撰文称,他们研发出了全球首个完全由碳基材料制成的等离子激光器。该技术有望在提高运行速度的同时,彻底改变电子产品的外形。未来,如名片般轻薄柔软的手机甚至能被直接印制在衣服上。   等离子激光器的大名叫表面等离子体激元纳

科学家研制出最微小天平:可称出分子质量

  据国外媒体报道,科学家研制出世界上最微小的天平,可以实时称量单个分子的质量。借助这种最小的天平,研究人员称出了某种蛋白质分子和金纳米微粒的质量。   据了解,世界上最微小的天平是由美国加州理工学院物理学家迈克尔-卢克斯和他的同事研制的。研究人员可以利用这种微型仪器实时称量单个分子的质量。最小天

最微小天平——可称出分子质

据国外媒体报道,家研制出世界上最微小的,可以实时称量单个分子的质量。借助这种最小的天平,研究人员称出了某种质分子和金微粒的质量。据了解,世界上最微小的天平是由加州理工学院物理学家迈克尔-卢克斯和他的同事研制的。研究人员可以利用这种微型仪器实时称量单个分子的质量。最小天平可谓用途广泛。家可以用这种高灵

结合盘式光学谐振器与PTIR技术,AFM实现纳米级精确测量

  大多数测量仪器都受制于测量精度和测量速度之间的权衡,因为测量越精确,所需的时间就越长。可是,纳米尺度上出现的许多现象既快又小,因此,针对它们的测量系统必须能够在时间和空间上捕捉到它们的精确细节。上图为与光学谐振器集成的纳米级原子力显微镜(AFM)探针的彩色电子显微照片,这种盘式光学谐振器扩展了A

超越钻石,史上最高折射率聚合物!

  近几十年来,半导体材料一直是研究和工业应用中最重要一类材料,广泛应用于光电、光子器件等领域。然而,由于有毒且价格昂贵、机械柔性差,严重限制了其在可穿戴设备或生物系统中的应用。其中,聚合物半导体可以克服这些问题,有助于开发出更高效且灵活、高成本效益和可持续的新一代器件。但是当前的聚合物半导体大多是

科学家在纳米尺度实现金刚石超弹性

  《科学》杂志4月20日报道了一项由中美科学家领导的国际团队对金刚石在纳米尺度下力学行为的重大发现,研究首次观测到纳米级金刚石可承受前所未有的巨大形变且能恢复原状,其中单晶纳米金刚石的局部弹性拉伸形变最大可达到约9%,接近金刚石在理论上可达到的弹性变形极限。  金刚石是世界上最坚硬的物质。除用作珠

斯坦福大学减缓/控制光线 应用于自动驾驶汽车激光雷达

光的速度非常快,而这种速度对于快速交换信息至关重要,不过,当光穿过材料时,其激发原子和分子的机会就会变得非常小。如果科学家能够减慢光粒子或光子的速度,就可以为一系列新技术应用打开大门。图片来源:斯坦福大学据外媒报道,近日,斯坦福大学(Stanford)的研究人员就展示了一种可显著降低光速的新方法,与

科学家在纳米尺度下实现金刚石超弹性

   纳米金刚石的超弹性变形及测量  4月20日,《科学》(Science)杂志报道了一项由中美科学家领导的国际科研团队对金刚石在纳米尺度下力学行为的重大发现:该项研究首次观测到在纳米级金刚石可承受前所未有的巨大形变且能恢复原状,而其中单晶纳米金刚石的局部弹性拉伸形变最大可以达到约百分之九,接近金刚

美国罗切斯特大学发现纳米金刚石在光致发光领域的应用

  近日,美国罗切斯特大学的研究人员首次在自由空间内的悬浮纳米金刚石上测量到光致发光所发射出的光束;该实验利用激光将纳米金刚石固置在空中,然后用另外一束激光照射金刚石,使之以定频形式发光。研究成果发表在Optics Letters上。   光学教授Nick Vamivakas领导了此次实验

微波量子库将机械振荡器引入量子技术

  在瑞士洛桑联邦理工学院近期的一项实验中,一种微波谐振器与金属微鼓振动发生了耦合作用,通过主动冷却近乎量子力学所允许的最低能量的机械运动,微鼓可以变成一个能够塑造微波状态的量子库。该发现发表在《自然—物理学》杂志上。微鼓的电子显微镜照片扫描 图片来源:美国《科学日报》  纳斯博特·伯尼尔博士和阿列

2月18日《自然》杂志内容精选

  封面故事:鳗草的全基因组序列  本期封面所示为受损海草草场的边缘,显示了暴露的根茎和根,它们的作用是固碳、稳定底土和为地球上生产力最高、生物多样性最大的生态系统之一提供基本支持。该照片是在芬兰西南 “群岛海”的Kolaviken附近拍摄的。鳗草在整个北半球广泛分布,因此它在生态上相当重要,但同其

奥地利科学家成功在两个单光子间建立强大的相互作用

  在自由空间中的两个光子之间不相互作用,光波彼此擦身而过不会相互影响。然而,对于量子技术的许多应用,光子之间的相互作用却至关重要。奥地利维也纳理工大学的一个科学家团队现成功在两个单光子之间建立起强大的相互作用,朝着轻拍校验(tap-proof)量子通道或建立光学逻辑门发送信息迈出了重要一步。该研究

德国科学家研究量子记忆体取得新进展

  据德国马普学会网站消息,马普量子光学研究所(MPL)的专家团队于近期首次成功在晶体中精确定位单个稀土离子,并准确测量了其量子力学的能量状态。这一研究使得在离子中存储量子信息成为可能,将对未来量子计算机的研发产生重大贡献。   世界范围内,很多学者都在研究构建未来的量子计算机的模块。其中,量子系统

碳纳米管有望成量子单光子源

据美国洛斯阿拉莫斯国家实验室官网近日消息,该实验室研究人员正与法国、德国伙伴合作,探索碳纳米管作为量子信息处理所用的单光子发射器的潜能。发表在最新一期《自然·材料学》杂志的新研究将促进基于光学的量子通信和量子计算的发展。    论文作者之一、该实验室集成纳米技

超材料为太赫兹技术发展打开大门

太赫兹电磁波在非侵入性的成像与传感技术、信息技术、通信技术以及存储技术领域有着广阔的应用前景,虽然人们已经认识到太赫兹电磁波的重要性,但由于自然界材料的限制,制备高效的太赫兹发射源非常困难。  通过宽带太赫兹源,可以为研究基础物理学提供更多激动人心的方法,并可用于非侵入性材料成像与感知技术,以及太赫

利用三维飞秒激光光刻技术制备纳米晶体结构

  材料本身的光学性质不仅取决于其化学性质,还取决于其亚波长结构。由此而来的诸如光子晶体和超材料等,拓展了人们对于光学结构和光学材料的认识,展现出不同于自然材料的新奇现象和功能。然而,在过去的研究中,光学晶体的纳米结构集中于材料的二维表面。这是因为应力诱导的裂纹形成和传播使得高精度的三维体积加工具有

激光粒度仪在纳米材料粒度检测中的应用

      一、纳米材料  纳米级结构材料简称为纳米材料,广义上是指三维空间中至少有一维处于纳米尺度范围超精细颗粒材料的总称。根据2011年10月18日欧盟委员会通过的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳

伯克利实验室开发出具有单分子水平灵敏度的纳米传感器

  (Nanowerk新闻)想象一下能够在自己的厨房测试你的食物,并且迅速判断它是否携带致命微生物。在劳伦斯伯克利国家实验室(伯克利实验室)进行的研究并且现在被Optokey商业化使这成为可能。  Optokey,总部在加利福尼亚的Hayward,已经开发出一种基于拉曼光谱技术的微型传感器,这种传感

日本发布纳米科技和材料研发报告

不久前,日本科学技术振兴机构(JST)发布了2015年日本纳米技术和材料研发概要和分析报告。该报告介绍了该领域过去、现在及未来的发展、著名研究机构和研究人员、全球范围内的研发和工业化趋势,日本与其他国家在纳米科技和材料方面的技术水平比较、全球创新研发战略以及日本未来在该领域的发展前景

这种全新片上光源可将红外波变为多种课件波长

  研究人员设计了一种新的芯片集成光源,可以将红外波长转换为可见波长,而使用基于硅芯片的技术很难生产这种波长。 这种灵活的片上光产生方法有望实现高度小型化的光子仪器,该仪器易于制造且坚固耐用,可以在实验室外使用。美国国家标准与技术研究院(NIST),马里兰大学和科罗拉多大学的研究人员在光学协会(OS