北京基因组所等发现RNA甲基化调控基因出核新机制
中国科学院北京基因组研究所精准基因组医学重点实验室及遗传与发育协同创新中心杨运桂研究组和郑州大学第一附属医院生殖与遗传专科医院孙莹璞研究组、中国科学院生态环境研究中心汪海林研究组合作研究,揭示了m5C(5-甲基胞嘧啶)修饰在mRNA的分布图谱规律及其对调控mRNA出核作用新机制。该研究成果以5-methylcytosine promotes mRNA export--NSUN2 as the methyltransferase and ALYREF as an m5C reader 为题,于4月18日在《细胞研究》(Cell Research)杂志发表。 研究团队首先建立改进的RNA m5C单碱基分辨率高通量测序与生物信息分析技术,揭示了mRNA m5C的分布规律,并绘制了精细的m5C修饰图谱,发现m5C在mRNA的翻译起始位点下游有显著富集,并且主要分布于CG富集区域。通过分析对比人和小鼠不同组织,发现m5C在mRNA上......阅读全文
研究揭示尼古丁代谢调控的新机制
近日,中国农业科学院烟草研究所烟草功能成分与综合利用创新团队揭示了烟草转录因子NtMYB305a参与尼古丁代谢调控的分子机制。相关研究结果在线发表于《植物生理学(Plant Physiology)》杂志。 据张洪博研究员介绍,尼古丁是一种重要的天然生物碱,在烟草中的含量最为丰富,约占烟草总生物
胆碱能促进脑发育和提高记忆能力
自然界已形成若干机制以保证生长发育中的动物获得足够数量的胆碱。胎盘可调节向胎儿的胆碱运输。羊水中胆碱浓度为母血中10倍。新生儿阶段大脑从血液中汲取胆碱的能力是极强的。实验观察,新生鼠大脑中具有一种活性极强的磷脂酰乙醇胺-N-甲基转移酶(该酶不存在于成年鼠大脑)。而且,在新生鼠大脑中,S-腺苷甲硫
胆碱促进脑发育和提高记忆能力的介绍
自然界已形成若干机制以保证生长发育中的动物获得足够数量的胆碱。胎盘可调节向胎儿的胆碱运输。羊水中胆碱浓度为母血中10倍。新生儿阶段大脑从血液中汲取胆碱的能力是极强的。实验观察,新生鼠大脑中具有一种活性极强的磷脂酰乙醇胺-N-甲基转移酶(该酶不存在于成年鼠大脑)。而且,在新生鼠大脑中,S-腺苷甲硫
什么是DNA甲基化及其机制
DNA甲基化是最早发现的修饰途径之一,存在于所有高等生物中。DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。DNA甲基化的主要形式:5-甲基胞嘧啶、N6-甲基腺嘌呤、7-甲基鸟嘌呤。真核生物细胞内存在两种甲基化酶活性:日常型甲基转移酶:对半甲基化的DNA有较高的亲和力,特异性
概述阿扑吗啡与其他药物的相互作用
1、阿扑吗啡的化学结构与多巴胺相似,与左旋多巴合用时可提高抗震颤麻痹作用。 2、恩他卡朋为一种儿茶酚-氧位-甲基转移酶(COMT)抑制剂,而阿扑吗啡已知由儿茶酚-O-甲基转移酶(COMT)代谢,两者合用时可使发生心动过速、高血压和心律失常的风险增加,故联用时应谨慎,并应监测心率和血压。 3、
揭示富含GC区域的一类非CG甲基化
DNA胞嘧啶甲基化是一个重要的DNA修饰,植物中DNA甲基化可调节基因和转座子的表达。通常甲基化水平与基因表达负相关,在植物中的DNA甲基化发生在CG、CHG和CHH区域。然而,在非CG区域的DNA甲基化不仅在植物中广泛存在,并且在哺乳动物组织中也大量存在,如大脑和多能细胞等。 结构和功能不同
广州健康院等开发出抗实体肿瘤的DNA甲基转移酶/组蛋白去乙酰化酶的双效抑制剂
表观遗传修饰异常是恶性肿瘤发生发展的关键驱动力。其中,启动子区DNA过度甲基化和组蛋白乙酰化缺失在癌症中广泛存在,是导致肿瘤转录失调和异常谱系分化的因素之一。目前,已有多种DNA甲基转移酶(DNMTs)和组蛋白去乙酰化酶(HDACs)抑制剂获批用于血液系统肿瘤治疗。然而,这些药物的代谢稳定性差、治疗
SHMT1基因突变因子与药物介绍
该基因编码丝氨酸羟甲基转移酶的胞浆形式,丝氨酸羟甲基转移酶是一种含磷酸吡哆醛的酶,催化丝氨酸和四氢叶酸可逆地转化为甘氨酸和5,10-亚甲基四氢叶酸。这个反应提供了一个碳单位,用于在细胞质中合成蛋氨酸、胸苷酸和嘌呤该基因位于17号染色体的Smith-Magenis综合征区域内。该基因的一个假基因位于1
DNA甲基化有什么作用
DNA甲基化作用主要是DNA甲基转移酶以S-腺苷甲硫氨酸(SAM)为甲基供体,将甲基转移至碱基特定结构上的过程。哺乳动物中90%的DNA甲基化修饰是由DNA甲基转移酶识别DNA的5'CG-3'序列(CpG),并将SAM的甲基转移至胞嘧啶C-5位上。DNA 甲基化可引起基因组中相应区域
SHMT1基因编码的功能和结构描述
该基因编码丝氨酸羟甲基转移酶的胞浆形式,丝氨酸羟甲基转移酶是一种含磷酸吡哆醛的酶,催化丝氨酸和四氢叶酸可逆地转化为甘氨酸和5,10-亚甲基四氢叶酸。这个反应提供了一个碳单位,用于在细胞质中合成蛋氨酸、胸苷酸和嘌呤该基因位于17号染色体的Smith-Magenis综合征区域内。该基因的一个假基因位于1
三个月内搞定5分m6A甲基化谱文章
关于m6A修饰的研究在生物领域持续火热,近年国自然立项和文章发表数目保持指数增长趋势,2020年pubmed收录文章已经高达652篇。云序生物在m6A修饰测序领域具有丰富的经验,近期云序客户又连发了5篇m6A甲基化测序研究的文章,下面小编就带大家一起来分析下这几篇发表文章的研究思路,给想短时间内发表
我国学者成功解析药物改造中的“蝴蝶效应”
近日,生物技术研究所徐玉泉研究组和美国亚利桑那大学伊斯万•莫纳(Istvan Molnar)教授团队合作,在真菌氧甲基转移酶的理性设计和结构改造研究上取得突破。相关研究结果近日发表于化学类国际顶级期刊《美国化学会志》(Journal of American Chemical Society,影
科学家发现增强干扰素抗病毒效应新分子新机制
中国工程院院士、中国医学科学院院长曹雪涛团队日前发现,甲基转移酶分子SETD2能够显著增强干扰素的抗病毒效应,促进机体抵抗病毒能力,提高干扰素疗法清除乙肝病毒效果。该发现为抗病毒免疫应答效应机制提出了新观点,也为有效防治病毒感染性疾病提供了新思路。相关成果发表于新一期《细胞》杂志。 干扰素是
铁皮石斛多糖生物合成调控研究中获进展
铁皮石斛(Dendrobium officinale)是我国传统名贵的中药材,有长期的药用实践史,具有“益胃生津、滋阴清热”的功效,常用于治疗热病津伤、口干烦渴、胃阴不足、食少干呕、病后虚热不退、阴虚火旺、目暗不明。以甘露糖和葡萄糖为主要成分组成的水溶性多糖被认为是铁皮石斛最主要的药效成分之一,
遗传发育所植物NAD补救合成途径解析和进化研究获进展
NAD (尼克酰胺腺嘌呤二核苷酸) 作为电子传递载体(辅酶)参与众多的氧化还原反应而为广大研究人员所熟知。在植物NAD补救合成途径中(Preiss-Handler途径),特异性存在尼克酸(nicotinate,NA)和多种NA的衍生物(糖基化,甲基化等),但迄今为止,关于NA衍生物在植物代谢中的
干扰素抗病毒可以更“铁腕”
经过对700余种表观遗传相关分子的筛选,中国医学科学院院长、中国工程院院士曹雪涛研究团队首次发现了甲基转移酶SETD2分子能够显著增强干扰素的抗病毒效应,相关论文7月27日发表在《细胞》杂志上。 顾名思义,“干扰素”不直接“消灭”病毒,而是通过“干扰”达到抗病毒效果。它通过两个途径“干扰”,一
黄病毒重要蛋白NS5晶体结构研究取得突破
中国科学院武汉病毒研究所龚鹏学科组在乙型脑炎非结构蛋白NS5的研究中取得突破,相关结果于8月8日在线发表于病毒学期刊PLoS Pathogens上,题为Crystal Structure of the Full-Length Japanese Encephalitis Virus NS5
DNA甲基化的概念和原理
DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的
DNA甲基化的原理
DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的
DNA甲基化的基本原理
DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的
DNA甲基化的原理机制
DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的
简述DNA甲基化的原理
DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结
DNA甲基化的基本原理
DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的
DNA甲基化的作用原理
DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的
研究揭示胚胎发育关键信号调控机理
近日,中国科学院院士、中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究员徐国良课题组和美国加州大学圣地亚哥分校教授孙欣课题组合作,在一项最新研究中发现,TET双加氧酶介导的DNA去甲基化与DNMT甲基转移酶介导的甲基化共同作用,能够通过调控Lefty-Nodal信号通路,控制小鼠胚胎原肠运
研究发现组蛋白表观修饰参与调控植物铁离子的吸收
蛋白精氨酸甲基转移酶在转录调控、RNA加工、DNA修复和信号转导等重要生物学过程中发挥着重要作用。中科院遗传与发育生物学研究所凌宏清和鲍时来研究组最近的合作研究发现,拟南芥蛋白精氨酸甲基转移酶SKB1可根据细胞内铁离子含量的多少,动态结合到控制铁离子吸收的转录调控基因bHLH38、bHLH39、
泛酸的生物合成酶系
1,酮泛解酸羟甲基转移酶(EC 2.1.2.11)。酮泛解酸羟甲基转移酶(PanB)是PanB基因的表达产物,催化底物α-酮异戊酸增加一个甲基形成酮泛解酸,反应过程是可逆的。2.酮泛解酸还原酶(EC 1.1.1.169)。酮泛解酸还原酶(PanE)是PanE基因的表达产物,在NADPH的帮助下将酮泛
Nat-Plants:日本学者揭示乙酸有助植物耐旱
近日,我校交叉科学研究院新引进的杨凌、葛广波团队与中国科学院大连化学物理研究所研究团队共同合作,设计研发了首个儿茶酚-氧-甲基转移酶(COMT)的双光子荧光探针。该工作得到了审稿人的高度评价,作为“Hot paper”发表在化学及交叉科学领域一区期刊《欧洲化学》(Chem. Eur. J
Molecular-Cell:蛋白质翻译后修饰调控植物胁迫反应
甲基化修饰与一氧化氮(nitric oxide; NO)依赖的亚硝基化修饰是高度保守的蛋白质翻译后修饰,这两类修饰参与调控众多生物学过程,包括调控非生物胁迫反应。但二者调控非生物胁迫的分子机制不甚清楚。 中国科学院遗传与发育生物学研究所左建儒研究组在亚硝基化蛋白质组学研究中发现拟南芥蛋白质
甲基化的甲基化的功能
甲基化是蛋白质和核酸的一种重要的修饰,调节基因的表达和关闭,与癌症、衰老、老年痴呆等许多疾病密切相关,是表观遗传学的重要研究内容之一。 最常见的甲基化修饰有DNA甲基化和组蛋白甲基化。DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。DNA甲基化能引起染色质结构、DNA构象、D