哥大闵玮组:新型显微术突破传统光学成像的颜色极限

生命科学研究水平的发展很大程度上要归功于新型研究手段和生物技术的创新。其中,光学成像技术贯穿了生命科学研究的历史与未来。上至17世纪列文虎克利用显微镜开创了微生物学,下到如今已经广泛应用的荧光共聚焦显微镜,这个领域的每一次技术突破都极大地增强了人们认识微观世界的能力。近年来,光学显微镜技术在不断地突破自身的局限。例如2000年以来兴起的超分辨荧光成像技术,已经突破了光学衍射极限。时至今日,人类进入大数据和系统生物学时代,另一个日益显著的挑战摆在眼前:在复杂的生物系统中,如何对多种组分进行无损,快速,高灵敏度的同时成像?传统的荧光成像方法中,由于其探针发射光谱有较宽的宽度(~50nm),可见光波长区最多可以容纳5种颜色。正因为此,最多5种生物组分能被同时成像。要想在复杂体系里根本性地突破这个“颜色极限”,需要寻求全新的光谱学手段以及发展相应的特异性探针系列。 美国哥伦比亚大学化学系闵玮教授的团队近日报道了一种全新的成像技术:......阅读全文

冯建东论文登上《自然》封面-新型显微镜可以数“星星”

单分子电致化学发光显微镜在微纳结构成像上的论证。(冯建东供图)单分子电致化学发光显微镜固定(死)细胞成像。(冯建东供图)单分子电致化学发光显微镜活细胞成像。(冯建东供图)  单分子实验是从本质出发解决许多基础科学问题的重要途径之一,也是化学测量学面临的一个极限挑战。  8月12日,《自然》封面刊登了

光学显微镜(1)历史发展

光学显微镜(Optical Microscope,简写OM)是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形 玻璃表面能使物体放大 成像的规律有了认识。1590年,

显微镜种类大全

  主要分为:数码显微镜、测量显微镜、金相显微镜、三维视频显微镜、生物显微镜、体视显微镜、工业相机、工业镜头、微循环检测仪、一滴血检测仪等几大类,产品广泛应用于精密工业行业、医学、教学、保健等领域。一、 明视野观察(Bright field)  二、浮雕相衬显微镜(RC)  三、微分干涉称镜检术(D

影响显微成像质量的因素显微镜镜头

显微镜镜头分不同类型,但即使对于同一类型的镜头,其成像质量也有着很大的差异,这主要是由于材质、加工精度和镜片结构的不同等因素造成的,同时也导致不同档次的镜头价格从几百元到几万元的巨大差异。比较著名的如四片三组式天塞镜头、六片四组式双高斯镜头。对于镜头设计及生产厂家,一般用光学传递函数OTF(Opti

《光学通信》:突破单像素成像对快速运动物体成像瓶颈

  记者6月20日从中国科学院合肥物质科学研究院了解到,该院安徽光机所王英俭课题组提出了一种抗运动模糊快速运动物体的单像素成像新方法,在利用单像素成像所具有的宽光谱、高灵敏优势的同时,突破了单像素成像对快速运动物体成像应用的瓶颈限制。这项研究改变了人们一直以来认为单像素成像只适合于对静止或缓慢移动物

新型神经修复技术—神经异体移植术

  近日,来自肯塔基大学的研究人员通过进行一项多中心的研究发现了一种新型的神经修复机制,相比当前技术来讲,这种新型技术或可给患者带来更大的效益以及更少的副作用。  创伤性神经损伤较为常见,一旦当神经被切断其就不能够自愈了,而且必须通过外科手术来进行修复;对于不是很清晰的损伤,比如锯伤、枪伤等,其往往

AFMRaman-联用技术

 什么是近场光学?物体表面的场分布可以划分为两个区域,距离物体表面仅仅几个K的区域称为近场,近场光学则是研究距离物体表面一个波长范围的光学现象;从近场区域外至无穷远称为远场区域,通常观察工具如显微镜等各种光学镜头均处于远场范围。近场光学显微镜突破常规光学显微镜受到的衍射极限,在超高光谱分辨率下进行纳

Nanolive实时无标记断层扫描3D成像技术揭示病毒诱导的细..

Nanolive实时无标记断层扫描3D成像技术揭示病毒诱导的细胞病理反应机制细胞病变效应(CPE)是指病毒对组织培养细胞侵染后产生的细胞变性,是感染的标志。CPE可通过相差显微镜或荧光显微镜观察,但会产生光毒性,此次研究我们通过Nanolive数字全息断层显微术(DHTM)具有独特的最小干扰的方式揭

显微成像、光电芯片|-2023中国光学十大社会影响力事件发布

  中国光学十大社会影响力事件(Light10)是中国科技期刊卓越行动计划领军期刊 Light: Science & Applications ( https://www.nature.com/lsa/ )携手中国科学报社旗下科学传播旗舰品牌 科学网( https://www.sciencenet.

活体动物体内光学成像(八)

关于技术应用42. 可以用荧光素酶基因标记干细胞吗?如何标记? 可以,标记干细胞有几种方法。一种是标记组成性表达的基因,做成转基因小鼠,干细胞就被标记了,从此小鼠的骨髓取出造血干细胞,移植到另外一只小鼠的骨髓内,可以用该技术示踪造血干细胞在体内的增殖和分化及迁徙到全身的过程。另外一种方法是用慢病

活体动物体内光学成像(三)

(2) 免疫学与干细胞研究将荧光素酶标记的造血干细胞移植入脾及骨髓,可用于实时观测活体动物体内干细胞造血过程的早期事件及动力学变化。有研究表明,应用带有生物发光标记基因的小鼠淋巴细胞,检测放射及化学药物治疗的效果,寻找在肿瘤骨髓转移及抗肿瘤免疫治疗中复杂的细胞机制。应用可见光活体成像原理标记细胞,建

活体动物体内光学成像(六)

17. 标记好的细胞的荧光素酶是随机还是插入固定的位点? 插入的位点是随机的,但每一个构建好的细胞株我们都做过详细的分析,与其母细胞株进行详细的比较,证明荧光素酶的插入对细胞的各种特性(包括生长周期, 成瘤性等)没有造成影响。18. 能标记病毒吗?能标记病毒的某一个基因吗? 可以标记病毒,由于病毒在

活体动物体内光学成像(七)

关于生物发光与荧光及其它技术的比较 34. 荧光检测与生物发光检测的优势与劣势比较如何?  荧光发光需要激发光,但生物体内很多物质在受到激发光激发后,也会发出荧光,产生的非特异性荧光会影响到检测灵敏度。特别是当发光细胞深藏于组织内部,则需要较高能量的激发光源,也就会产生很强的背景噪音。作为体内报告源

活体动物体内光学成像(一)

活体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cy5及Cy7等)进行标记。该技术最初是由美国斯坦福大学的科学家采用了世界上最优秀的高性能CCD研发与生产制造商Roper scientific公司最

活体动物体内光学成像(二)

3. 实验过程 通过分子生物学克隆技术, 应用单克隆细胞技术的筛选,将荧光素酶的基因稳定整合到预期观察的细胞的染色体内,培养出能稳定表达荧光素酶蛋白的细胞株。典型的成像过程是:小鼠经过麻醉系统被麻醉后放入成像暗箱平台,软件控制平台的升降到一个合适的视野,自动开启照明灯拍摄第一次背景图。下一步,自动关

活体动物体内光学成像(九)

关于活体成像系统常见问题解答1. 关于小动物活体成像技术的起源与发展活体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cy5及Cy7等)进行标记。该技术最初是由美国斯坦福大学的科学家采用了世界上最优秀

活体动物体内光学成像(十)

3. 关于CCD的“背部薄化、背照射”与“冷”的确切含义是什么?之所以叫冷CCD,是由于CCD的芯片温度下降到零下70℃或110℃,可以降低噪音,提高检测的灵敏度。Cryogenic 的制冷技术可以使CCD的温度达到-70℃到 -110℃,那样的温度可以使背照射冷CCD的暗电流减少到可忽略不

活体动物体内光学成像(四)

3. 标记细菌(1) 细菌侵染研究可以用标记好的革兰氏阳性和阴性细菌侵染活体动物, 观测其在动物体内的繁殖部位、数量变化及对外界因素的反应。(2) 抗生素药物利用标记好的细菌在动物体内对药物的反应,医药公司和研究机构可用这种成像技术进行药物筛选和临床前动物实验研究。4. 基因表达和蛋白质相互作用(1

成像光学元件的种类和选型小科普

  当我们听到诸如光学系统,光电倍增管,二极管的时候,是不是觉得这些词汇太过专业了,虽然物理课学过,但印象总是很朦胧。今天小编就带大家来了解一下这些词汇都是啥(当然物理专业大佬除外哈~~~)   光电倍增管-PMT   官方定义:光电倍增管是一种真空器件。它由光电发射阴极(光阴极)和聚焦电极、电

活体动物体内光学成像(五)

3. 底物荧光素(Luciferin)是如何进入小鼠体内的?需要多少? 荧光素是腹腔注射或尾部静脉注射进入小鼠体内的,约一分钟就可以扩散到小鼠全身。 大部分发表的文章中,荧光素的浓度是150mg/kg (见下图)。20克的小鼠需要3毫克的荧光素,价钱约两到三美元。常用方法是腹腔注射,扩散较慢

光子如雪也能崩塌

  寂静的雪山,随着一声“咔嚓”的轻响,雪层断裂,“白色妖魔”呼啸而下,巨大的力量能将将所过之处扫荡殆尽,自然界的雪崩危害巨大,能摧毁森林、威胁人类。实际上,雪崩并非雪花专有,光子也能发生雪崩,同样的能量喷涌,带来的却是革命性的应用。 近日,研究人员开发出了第一个证明“光子雪崩”的纳米材料,这可

光学显微镜的研究与发展

早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理

光学显微镜的发展历史

  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出

实验室检验检测工具物镜

物镜是由若干个透镜组合而成的一个透镜组。组合使用的目的是为了克服单个透镜的成像缺陷,提高物镜的光学质量。显微镜的放大作用主要取决于物镜,物镜质量的好坏直接影响显微镜映像质量,它是决定显微镜的分辨率和成像清晰程度的主要部件,所以对物镜的校正是很重要的。物镜是显微镜最重要的光学部件,利用光线使被检物体第

光学显微镜能看到波长的多少倍的象?

       光学系统分辨率是由系统的数值孔径(N.A.)决定的,具体数值由瑞利判据得到:d=0.61λ/N.A.因此,普通光学显微镜的分辨率是由物镜的数值孔径决定的。      一般物镜数值孔径小于1,特殊油镜可以做到1以上,常见的有1.25,1.3和1.4左右。因此套用较大的1.4代入上述瑞利判

数码金相显微镜的概述

  显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器。是人类进入原子时代的标志。用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜。 数码金相显微镜就属于光学显微镜的范畴。光学显微镜是在1590年由荷兰的杨森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极

显微镜都有哪些种类,分别是做什么用途的

显微镜以显微原理进行分类可分为偏光显微镜、光学显微镜与电子显微镜和数码显微镜。1、偏光显微镜(Polarizing microscope)是用于研究所谓透明与不透明各向异性材料的一种显微镜,在地质学等理工科专业中有重要应用。2、光学显微镜通常皆由光学部分、照明部分和机械部分组成。光学显微镜可把物体放

实验室检验检测工具显微镜

显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微镜是在1590年由荷兰的詹森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般

PerkinElmer在FOM-2010举办细胞成像分析系统客户交流活动

  PerkinElmer 即将参加第23届国际聚焦显微学术研讨暨设备展览会 (简称︰FOM 2010) 並举办一系列 3D Live Cell Imaging System(细胞成像分析系统) 的专题客户交流活动。   以下是我们的会议日程,欢迎莅临参观︰   3月28日上午9:00

为什么显微镜成像是倒置的

早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。 1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合