VR居然可以镇痛?效果比吗啡还好

智能设备 | VR镇痛效果是吗啡的两倍 过亿美国人受过慢性疼痛的苦,自 1990 年代以来,该国阿片类处方药的数量已翻至 3 倍。尽管美国只占全球人口的 5%,这类镇痛药物的使用量竟达到了 80% 。显然,我们亟需找到一种替代品,比如虚拟现实(VR)。行业资深人士霍华德·罗斯认为这应该可行。20 多年前,他在华盛顿大学人机交互技术实验室(HITLab)开始涉足 VR 行业。该实验室由美国空军老兵汤姆·弗内斯创立,他从上世纪 60 年代开始,就已经在军队里体验过各种 VR 元素,比如治疗恐惧症和教育教学。 HITLab 心理学家亨特·霍夫曼打造了一个冰雪世界(SnowWorld),这项实验旨在通过让烧伤患者沉浸在一个虚拟环境中,对他们进行镇痛治疗。简而言之,这个冰雪世界,就是用来转移患者的疼痛注意力的。 理化研究 | 中国科大在电催化析氢研究方面取得进展 氢被认为是环境友好的清洁能源,电催化分解水可以制备高纯氢气,在碱......阅读全文

VR居然可以镇痛?效果比吗啡还好

  智能设备 | VR镇痛效果是吗啡的两倍  过亿美国人受过慢性疼痛的苦,自 1990 年代以来,该国阿片类处方药的数量已翻至 3 倍。尽管美国只占全球人口的 5%,这类镇痛药物的使用量竟达到了 80% 。显然,我们亟需找到一种替代品,比如虚拟现实(VR)。行业资深人士霍华德·罗斯认为这应该可行。2

中国科大电催化析氢材料设计取得进展

  “Less is more”是著名建筑师米斯×凡德洛说过的一句话,这种“少即多”的设计理念是提倡形式简单而反对过度浮华,认为简单的东西往往带给人们更多的享受。这个设计理念能否在材料科学领域有借鉴价值?近日,中国科学技术大学熊宇杰教授课题组完成的一项工作充分说明了“少即多”设计在电催化析氢材料设计

中国科大在电催化析氢研究方面取得进展

  氢被认为是环境友好的清洁能源,电催化分解水可以制备高纯氢气,在碱性介质中电解水是最有可能实现产业化制氢的技术。一直以来贵金属是该领域活性最高的催化剂,近年来科研人员持续探索致力于将过渡金属发展成高活性碱性析氢电催化剂以降低成本,然而很多催化剂的活性与贵金属相比还有很大的差距。将少量的贵金属与过渡

高效非贵金属析氢电催化研究获进展

  复旦大学材料科学系吴仁兵、方方教授团队在高效非贵金属析氢电催化剂方面获新进展,相关研究成果近日发表于《先进材料》。  氢能作为一种原料丰富、燃烧值高、零污染的清洁能源,被科学家和大众寄予了很高的期望。要想发展氢能技术,不可或缺的一步就是把水通过电化学反应转换成氢气,但析氢反应所需过电位较高,需要

析氢反应电催化剂研究:新材料替换铂金

  复旦大学26日发布,该校材料科学系吴仁兵、方方教授团队在高效非贵金属析氢电催化剂方面获新进展,相关研究成果近日发表于国际期刊《先进材料》。图片来源于网络  氢能原料丰富、燃烧值高、零污染,被科学家和大众寄予厚望。要想发展氢能技术,不可或缺的一步就是把水通过电化学反应转换成氢气,这就是析氢反应。但

科学家获得界面水分子结构-为绿色制氢提供新途径

  水分子直接参与众多重要的电催化反应,但对处于固液两相界面的水分子在电催化反应过程中的结构变化与作用机制研究一直是电化学领域的难点。近日,厦门大学化学化工学院李剑锋教授课题组与北京大学深圳研究生院潘锋教授团队合作,利用电化学原位拉曼光谱技术揭示了界面水分子结构,解开了界面水分子结构如何调控电催化反

科学家获得界面水分子结构,为绿色制氢提供新途径

  水分子直接参与众多重要的电催化反应,但对处于固液两相界面的水分子在电催化反应过程中的结构变化与作用机制研究一直是电化学领域的难点。近日,厦门大学化学化工学院李剑锋教授课题组与北京大学深圳研究生院潘锋教授团队合作,利用电化学原位拉曼光谱技术揭示了界面水分子结构,解开了界面水分子结构如何调控电催化反

拉曼成像光谱仪

  拉曼成像光谱仪是一种用于生物学、基础医学、临床医学、药学领域的分析仪器,于2013年12月31日启用。  技术指标  1) 激光器:内置3个激光器 —532nm、638nm和785nm; 2) 光栅:4块光栅全自动切换,自由选择多种光谱分辨率; 3) 光谱范围:100cm-1到4000cm-1,

拉曼光谱仪定义

  拉曼光谱仪主要适用于科研院所、高等院校物理和化学实验室、生物及医学领域等光学方面,研究物质成分的判定与确认;还可以应用于刑侦及珠宝行业进行毒品的检测及宝石的鉴定。该仪器以其结构简单、操作简便、测量快速高效准确,以低波数测量能力著称;采用共焦光路设计以获得更高分辨率,可对样品表面进行um级的微区检

拉曼光谱仪知识

  拉曼(Sir Chandrasekhara Venkata Raman, 1888(戊子年)-1970)。印度物理学家,又译喇曼。因光散射方面的研究工作和拉曼效应的发现,获得了1930年度的诺贝尔物理学奖。1921 年,印度物理学家拉曼(C. V. Raman)从英国搭船回国,在途中他思考着为什

拉曼光谱仪知识

  1. 含义  光照射到物质上发生弹性散射和非弹性散射,弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。  当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射

拉曼光谱仪概述

当光与介质发生相互作用时,会产生吸收、反射、透射和发射等多种光学效应和现象。1923年奥地利科学家Srnekal预言了光的非弹性散射现象,1928年印度科学家Raman(拉曼)和Krishnan首次从实验上观察到此现象。他们在四氯化碳(CC1t)等液体中发现在入射光频率的两端出现对称分布的明锐谱线,

激光拉曼光谱仪

激光拉曼光谱仪是一个集合了激光光谱学、精密机械和微电子系统的综合测量体系。其最终结果是获得散射介质在一定方向上具有一定偏振态的散射光强随频率分布的谱图。 激光拉曼光谱仪分析是一种非破坏性的微区分析手段,液体、粉末及各种固体样品均不需特殊处理即可用于拉曼光谱的测定。拉曼光谱可以单独,或与其他技术(如X

揭秘界面水分子结构调控电催化反应

界面水分子原位拉曼光谱和水分子解离过程 厦门大学供图  12月2日,《自然》刊发厦门大学化学化工学院教授李剑锋课题组题为《原位拉曼光谱揭示界面水分子结构和其解离过程》的研究论文。通过与北京大学深圳研究生院教授潘锋课题组合作,他们揭示了钯单晶电极界面水分子构型及其在析氢反应中的核心机制,为提升电催化反

显微拉曼光谱仪与便携拉曼光谱仪的优势区别

 高利通科技显微拉曼光谱仪与便携拉曼光谱仪并无太大的区别,非要说不同,那就是显微拉曼光谱仪是便携拉曼光谱仪基础上多一个显微镜,可实现探测更加精密的物质。    显微拉曼光谱仪的优势:    1、灵活的采样方式:      2、高精度探测镜:      3、高品质、高灵敏探测器:    CCD探测器使

揭秘界面水分子结构调控电催化反应

12月2日,《自然》刊发厦门大学化学化工学院教授李剑锋课题组题为《原位拉曼光谱揭示界面水分子结构和其解离过程》的研究论文。通过与北京大学深圳研究生院教授潘锋课题组合作,他们揭示了钯单晶电极界面水分子构型及其在析氢反应中的核心机制,为提升电催化反应速率提供了一种新的策略,解开了界面水分子结构如何

新研究提出“双自建门控增强电催化析氢”策略

电催化析氢是目前最有前途的绿色制氢技术之一,是实现可再生清洁能源的重要途径。近日,武汉大学一项关于双自建门控调控电催化析氢活性的最新研究,提出了一种“双自建门控”的策略调控催化剂的电子结构,实现了对催化剂本征活性的极大提升,并以研究性论文的形式,发表在《先进材料》。 电

德国应用化学:新型催化体系实现高效电催化析氢

   近日,中国科学院大连化学物理研究所研究员刘健团队与大连理工大学研究员周思,联合天津大学教授梁骥团队,通过单原子催化剂改性碳载体的策略,增强载体与其上负载金属粒子间的相互作用,构筑了钴单原子催化剂掺杂碳载金属钌(Ru)纳米反应器,实现了电催化析氢反应中绿氢的高效制备,为碳载金属纳米催化剂性能的调

新研究提出“双自建门控增强电催化析氢”策略

  电催化析氢是目前最有前途的绿色制氢技术之一,是实现可再生清洁能源的重要途径。近日,武汉大学一项关于双自建门控调控电催化析氢活性的最新研究,提出了一种“双自建门控”的策略调控催化剂的电子结构,实现了对催化剂本征活性的极大提升,并以研究性论文的形式,发表在《先进材料》。  电催化析氢反应过程中,缓慢

新研究提出“双自建门控增强电催化析氢”策略

电催化析氢是目前最有前途的绿色制氢技术之一,是实现可再生清洁能源的重要途径。近日,武汉大学一项关于双自建门控调控电催化析氢活性的最新研究,提出了一种“双自建门控”的策略调控催化剂的电子结构,实现了对催化剂本征活性的极大提升,并以研究性论文的形式,发表在《先进材料》。 电

中国科大在电催化析氢研究方面取得新进展

  近日,中国科学技术大学博士生苏建伟和杨阳(导师陈乾旺教授)通过理论计算,提出了将少量的贵金属钌与过渡金属钴合金化来提升钴催化活性的思想,并设计出了一种以金属有机框架化合物为前驱体来制备氮掺杂的类石墨烯层包裹合金内核复合结构的工艺。所制备的复合纳米结构作为碱性析氢电催化剂表现出与贵金属可比的析氢性

简述显微拉曼光谱仪与便携拉曼光谱仪的优势区别

  高利通科技显微拉曼光谱仪与便携拉曼光谱仪并无太大的区别,非要说不同,那就是显微拉曼光谱仪是便携拉曼光谱仪基础上多一个显微镜,可实现探测更加精密的物质。    显微拉曼光谱仪的优势:    1、灵活的采样方式:      2、高精度探测镜:      3、高品质、高灵敏探测器:    CCD探测器

简介激光显微共焦拉曼光谱仪拉曼位移

  在透明介质散射光谱中,入射光子与分子发生非弹性散射,分子吸收频率为ν0 的光子,发射ν0-ν1的光子,同时电子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为ν0的光子,发射ν0+ν1的光子,同时电子从高能态跃迁到低能态(反斯托克斯线)。靠近瑞利散射线的两侧出现的谱线称为小拉曼光谱;远离瑞利散

激光显微共焦拉曼光谱仪的拉曼效应

  光散射是自然界常见的现象。晴朗的天空之所以呈蓝色、早晚东西方的空中之所以出现红色霞光等,都是由于光发生散射而形成了不同的景观。拉曼光谱是一种散射光谱。在实验室中,我们通过一个很简单的实验就能观察到拉曼效应。在一暗室内,以一束绿光照射透明液体,例如戊烷,绿光看起来就像悬浮在液体上。若通过对绿光或蓝

激光拉曼和傅里叶变换拉曼光谱仪的比较

拉曼光谱仪按照激发光源与分光系统的不同可分为两大类:色散型拉曼光谱仪 (简称激光拉曼) 和傅里叶变换拉曼光谱仪 (简称傅变拉曼)。前者采用短波的可见光激光器激发、光栅分光系统,近年向着更短的紫外激光器发展;后者则采用长波的近红外激光器激发、迈克尔逊干涉仪调制分光等技术。激光拉曼和傅变拉曼由于在仪器的

什么是拉曼光谱仪?

  拉曼光谱仪主要适用于科研院所、高等院校物理和化学实验室、生物及医学领域等光学方面,研究物质成分的判定与确认;还可以应用于刑侦及珠宝行业进行毒品的检测及宝石的鉴定。该仪器以其结构简单、操作简便、测量快速高效准确,以低波数测量能力著称;采用共焦光路设计以获得更高分辨率,可对样品表面进行um级的微区检

拉曼光谱仪的特点

分类这种东西跟分类方式有关,以下仅是一种分法现代拉曼光谱分析技术持续发展中,被用来增强灵敏度(表面增强拉曼效应)、改善空间性的分辨率(微拉曼光谱仪),或者取得特殊的分析讯号(共振拉曼光谱)。表面增强拉曼通常以金或银的胶体或者基板上附着金或银的纳米粒子。金或银粒子的表面等离子共振由雷射所激发,其结果产

AvaRaman系列拉曼光谱仪

AvaRaman拉曼光谱仪是一体式的拉曼检测系统,集成了高稳定性、窄线宽的激光器(785 nm或532 nm),高灵敏度光谱仪,拉曼测量软件及配套Panoraman光谱学数据处理软件,聚焦型拉曼探头及样品支架。     AvaRaman-Supreme高性能拉曼光谱仪,采用了最新的虚拟狭缝技

拉曼光谱仪的特点

分类这种东西跟分类方式有关,以下仅是一种分法现代拉曼光谱分析技术持续发展中,被用来增强灵敏度(表面增强拉曼效应)、改善空间性的分辨率(微拉曼光谱仪),或者取得特殊的分析讯号(共振拉曼光谱)。表面增强拉曼通常以金或银的胶体或者基板上附着金或银的纳米粒子。金或银粒子的表面等离子共振由雷射所激发,其结果产

拉曼光谱仪的原理

其原理为当一束频率为v0的单色光照射到样品上后,分子可以使入射光发生散射。大部分光只是改变光的传播方向,从而发生散射,而穿过分子的透射光的频率,仍与入射光的频率相同,这时,称这种散射称为瑞利散射;还有一种散射光,它约占总散射光强度的 10^-6~10^-10,该散射光不仅传播方向发生了改变,而且该散