俄提出伽马射线激光器研发新方案
长期以来,建造原子核伽马激光器一直是个难题。据美国物理学家组织网5月2日报道,莫斯科大学核物理专家最近提出了一种新方案,并从理论上证明,钍原子核受激产生的伽马辐射也能发出相干“可见”光。相关研究发表在最近出版的《物理评论快报》上。 尽管原子核伽马射线激光也是以受激辐射为基础,但操作起来却和普通激光大不相同。在通常物质中,处于低能级的原子数大于处于高能级的粒子数,为了得到激光,必须使高能级上的粒子数目大于低能级上的原子数目,这种情况称为粒子数反转。在普通激光中,粒子数反转是让高能态电子比低能态电子多。普通激光的光子由原子或离子发出,而伽马射线激光的光子是由原子核发出,也称为原子核光。 原子核光的产生至少要克服两个基本难题:一是积累一定量的同质异能原子核(能长时间保持激发态的原子核),二是缩小伽马射线发射界限。莫斯科大学核物理学院的尤金·塔卡利亚解释说,他们利用钍元素的独特原子核结构,满足了这些要求,......阅读全文
俄提出伽马射线激光器研发新方案
长期以来,建造原子核伽马激光器一直是个难题。据美国物理学家组织网5月2日报道,莫斯科大学核物理专家最近提出了一种新方案,并从理论上证明,钍原子核受激产生的伽马辐射也能发出相干“可见”光。相关研究发表在最近出版的《物理评论快报》上。 尽管原子核伽马射线激光也是以受激辐射为基础
世界最大的粒子加速器——首次加速电离铅原子
欧洲核子研究中心日前发布新闻公报称,大型强子对撞机(LHC)首次被用于加速电离的铅原子。此次试验是为检验“伽马射线工厂”设想的可行性,将来希望用LHC产生高强度伽马射线,以进行物理学前沿研究。 资料显示,LHC是世界最大的粒子加速器,此前从未处理过带有电子的原子核,其日常工作是加速质子即氢原子
大型强子对撞机首次加速原子:达到接近光速
大型强子对撞机是世界上最大的粒子加速器,一直在进行原子核的加速,这也是人们有时会将这台大型仪器称为“原子粉碎机”的原因。 北京时间8月6日消息,据国外媒体报道,7月25日,欧洲核子研究中心(CERN)大型强子对撞机(Large Hadron Collider,LHC)研究团队又取得了一项突破,
最大伽马射线计划全球“相亲”
CTA将是现有全球最大的伽马射线捕获设备,它将在南北半球各设立一座天文台。 一个颇具雄心壮志的项目计划建造两座相同的天文台,以探测来自深空的伽马射线——高能光子。该项目已进入重要阶段,27国成员必须从9个可行地点中选出两个,建造切伦科夫望远镜阵列(CTA)。各国争相为这些耗资2亿欧
研究发现新星爆发产生伽马射线
一个国际天文研究小组13日报告说,该小组在不久前观测某新星爆发时,发现爆发区域产生了高能量的伽马射线。这一现象十分罕见。 日本京都大学、广岛大学和美国、欧洲天文机构的研究者13日在美国《科学》杂志上发表论文指出,今年3月,日本天文爱好者发现天鹅座出现新星爆发。研究小组用20
婴儿恒星“发脾气”喷出伽马射线
阿根廷天文学家首次目睹了一颗婴儿恒星爆发出高能伽马射线,这一发现证明,年龄不足1000万岁的低质量金牛座T星可发射伽马射线,这是迄今已知能量最高的光辐射。这一最新发现有助加深科学家们对恒星和行星系统形成早期的理解。相关论文刊发于最新一期《皇家天文学会月报》。 阿根廷拉普拉塔国立大学天文学家艾格
“奇怪”伽马射线暴挑战起源模型
中新网北京12月8日电 (记者 孙自法)国际著名学术期刊《自然》及专业期刊《自然-天文学》最新发表针对伽马射线暴(GRB)的5篇天文学论文,共同描述了一个起源更像短伽马射线暴的长伽马射线暴。这项新发现的“奇怪”伽马射线暴研究结果,挑战了一直以来认为的传统观点——这类事件的持续时间可以直接归因于其假定
X光的波长分类
软X射线:X射线波长略大于0.5 nm的被称作软X射线。 硬X射线:波长短于0.1纳米的叫做硬X射线。 硬X射线与波长长的(低能量)伽马射线范围重叠,二者的区别在于辐射源,而不是波长:X射线光子产生于高能电子加速,伽马射线则来源于原子核衰变。
重元素多星系也有伽马射线爆发
日本研究人员在21日的美国专业期刊《天体物理学杂志》网络版上发表文章指出,在重元素含量高的星系中,也会发生伽马射线爆发。 而此前人们一直认为,伽马射线爆发是伴随着重元素含量很少的大质量恒星发生超新星爆发而出现的现象。 来自日本京都大学、国立天文台、东京工业大学等机构的
一类新的伽马射线源
据一项新的研究报道,通常与像超新星等极端猛烈爆炸有关的高能伽马射线如今在3个经典新星中得到报告。文章的作者说,这也许是这类能量较低天文源的常态。经典新星会在某单一恒星在由某伴星给予的材料点燃而突然变亮时出现。在2012年和2013年,在费米伽马射线太空望远镜上的大视场望远镜检测到了来自3颗经典新
短伽马射线暴的准周期振荡
美国马里兰大学帕克分校的Cecilia Chirenti和合作者报告了在两个短伽玛射线暴中探测到的振荡信号,它们可能是在两个中子星合并形成大质量中子星的过程中产生的。这为研究伽玛射线暴事件的性质提供了机会。相关研究1月10日发表于《自然》。 中子星(大质量恒星在生命末期的致密核)的碰撞,有时会在
激光的基本特性
定向发光普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。1962年,人类第一次使用激光照
科学家发现银河系存在天然原子核加速器证据
据物理学家组织网8月17日报道,加州大学洛杉矶分校和日本的物理学家分析了来自阿根廷皮埃尔·奥格天文台的观察数据,发现在我们的银河系中存在天然原子核加速器的证据,表明银河系曾有巨大星体爆发。这项研究将刊登在8月20日的《物理评论快报》上。 皮埃尔·奥格天文台是世界最大的宇宙射
新型高敏感度成像技术集磁共振和伽马射线优点于一身
英国《自然》杂志28日公开的一篇论文,描述了一种集磁共振成像和伽马射线成像优点于一身的新型光谱成像技术,有望为开发新型医学诊断工具打下基础。 磁共振成像是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。这是医学领域非常重要的诊断工具,因为它具有卓越的空
X光的分类
辐射分类 轫致辐射:如果被靶阻挡的电子的能量,不越过一定限度时,只发射连续光谱的辐射。这种辐射叫做轫致辐射,连续光谱的性质和靶材料无关。 特征辐射:一种不连续的,它只有几条特殊的线状光谱,这种发射线状光谱的辐射叫做特征辐射,特征光谱和靶材料有关。 波长分类 软X射线:X射线波长略大于0.
俄罗斯投资建伽马射线观测台
据伊尔库茨克大学介绍,该校申报的伽马射线观测台项目已通过俄教科部评比。2015年前,项目组将从联邦财政获取9000万卢布资金支持,用于在布里亚特通卡谷地建造伽马射线观测台——Tunka HiSCORE。通过这个观测台,希望能就宇宙的过去、现在和未来扑捉到全新的信息。 2009年,为研究
研究发现伽马射线爆发时有强大磁场参与
日本研究人员日前宣布,他们弄清了宇宙中最强的爆炸现象——伽马射线爆发的部分机制,即在伽马射线爆发时可能有强大磁场参与。这一成果将有助于弄清伽马射线爆发的详细机制。 伽马射线爆发被认为主要在离地球100亿光年以外的太空中发生。当质量相当于太阳30倍以上的巨大恒星寿命终结,发生超新星爆发并产生
伽马射线暴首次在实验室再现
据美国趣味科学网站1月17日报道,一个国际科研团队借助地球上最强烈的激光,首次在实验室中制造出“迷你”版伽马射线暴,证实了目前用于研究伽马射线爆发的模型是正确的。新研究有助进一步理解黑洞的属性,以及宇宙的诞生甚至演化历程。 伽马射线暴是光的强烈爆发,是人们观测到的最明亮事件,持续时间仅几秒,有
最亮伽马射线暴源自大质量恒星坍塌
伽马射线暴221009A(艺术图)。在一项最新研究中,美国西北大学科学家领导的团队证实,迄今最明亮伽马射线暴221009A,源自一颗大质量恒星的坍塌和随后的爆炸。他们使用美国国家航空航天局的韦布空间望远镜发现了这场爆炸。相关论文发表于新一期《自然·天文学》杂志。221009A这场强大爆炸发生在距地球
氪98原子核同时存在两种形状
该发现有助观察核内对称性变化 日本理化学研究所仁科加速器研究中心的一个国际联合研究小组,利用重离子加速器设施(RIBF),对氪98、氪100(质子数36,中子数分别为62和64)原子核的低激发态进行研究后发现,氪98原子核中有两种不同形状共存的现象。 原子核中的质子和中子由强相互作用连结在一
英国研制最明亮伽马射线-亮度超太阳一万亿倍
这一项目的负责人:来自斯特拉斯克莱德大学的蒂诺·雅诺辛斯基教授 北京时间9月21日消息,据国外媒体报道,英国斯特拉斯克莱德大学领导的一个科研小组日前制造出一束地球上最明亮的伽马射线——比太阳亮1万亿倍。这将开启医学研究的新纪元。 物理学家们发现超短激光脉冲可以和电离气体发生反应,
吸收能量,是电子吸收能量而跃迁,还是原子吸收能量
都有可能,一般来说都是外层电子跃迁,这样的跃迁一般涉及红外、可见光、紫外线这种能量较低的光子。但内层电子也可以跃迁,这涉及x射线这种能量较高的光子。原子核也能跃迁,这涉及到伽马射线这种能量很高的光子,一般只有核反应里才能遇到。
一个原子核能有多少中子?
日本物理学家已制造出有史以来最重的钙原子核——含有20个质子以及40个中子。其中的中子是最常见钙的两倍多,比此前的记录多了两三个。这一发现表明,在原子核中可包含的中子或许比以前认为的更多,这或将对中子星理论产生影响。 “这的确是一个重要而有趣的发现。”美国俄亥俄大学理论核物理学家Daniel
激光的特性
定向发光普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。1962年,人类第一次使用激光照
地球上电离层探测到伽马射线暴
原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512301.shtm ? 艺术图描绘了强大的伽马射线暴对地球电离层造成的严重干扰。图片来源:《自然·通讯》 科技日报北京11月14日电 (记者张梦然)《自然·通讯》14日发表的一篇
宇宙最大谜团之一伽马射线暴来源确定?
据英国《自然·天文学》杂志近日在线发表的一篇论文,科学家最新发现一个尘气涡旋遮蔽了一对相互绕行的大质量恒星。测量该星云的速度显示,其中至少一颗恒星的转速,足以使之在发生超新星爆发时发射出持久的伽马射线暴。该研究为人类寻找银河系伽马射线暴的来源提供了一个迄今最强有力的“候选目标”。 伽马射线暴是
“慧眼”和“极目”精确探测迄今最亮伽马射线暴
原文地址:http://news.sciencenet.cn/htmlnews/2023/3/497266.shtm 北京时间3月29日凌晨2点,中国科学院高能物理研究所(简称高能所)与全球40余家科研机构联合发布对迄今最亮伽马射线暴(简称伽马暴)GRB 221009A的研究成果。高能所牵头研制
天地联合!我国观测到迄今最亮伽马射线暴
日前,记者从中国科学院高能物理研究所获悉,10月9日21点17分,高海拔宇宙线观测站(LHAASO,拉索)、高能爆发探索者(HEBS)和慧眼卫星(Insight-HXMT)同时探测到迄今最亮的伽马射线暴(编号GRB 221009A)。这是我国首次实现对伽马射线暴的天地多手段联合观测,并独家实现了从最
新突破!我国观测到迄今最亮伽马射线暴
图①:科学载荷“高能爆发探索者”(示意图)。 图②:“慧眼”卫星(示意图)。 图③:中国高海拔宇宙线观测站(“拉索”)。 以上均为中科院高能所供图 制图:张丹峰 中国科学院高能物理研究所负责建设和运行管理的中国高海拔宇宙线观测站(“拉索”)、科学载荷“高能爆发探索者”和“慧眼”卫星三大科
伽马射线探测器初定“两口之家”
CTA将在南北半球各建立一个望远镜阵列 当超高能的伽马射线猛烈撞击地球大气层时,它们会引发粒子雨,并释放出一种昏暗的蓝光。利用这种光,天文学家可以追踪罕见的伽马射线(每平方米的大气每月只会发生几次撞击)直至它们的源头——宇宙中的一些剧烈事件,例如特大质量黑洞。不过,研究人员必须首先为计划