科学家发现可追踪燃煤活动的纳米级颗粒物
华东师范大学教授杨毅等与美国弗吉尼亚理工大学教授Hochella等合作,发现一种新型的次生Magnéli相氧化钛在煤灰中广泛存在,并具有潜在的生物毒性。这种新型纳米颗粒物的发现不仅可以作为指示器示踪全球的煤燃烧活动,而且对于了解燃煤引发的人类健康风险具有重要意义。相关研究发表在日前出版的《自然—通讯》上,被选为当期热点文章并获相关专家推荐。 全世界每年大约有330万例过早死亡与PM2.5相关,尤其是其中富含的超细颗粒物纳米级颗粒物,可以穿透肺泡,转移到血液,进而损害包括心脏和大脑在内的人体其他器官,对人类健康造成严重威胁。 研究人员发现一种新型纳米颗粒物,其在透射电镜下显示出具有独特条纹的超细结构。该纳米颗粒物是一种在自然界中极其罕见的氧化钛的氧缺失形态——Magnéli相。经过详细的识别和分类,进而对各个形态进行准确的晶体结构鉴别,研究人员确认了该Magnéli相是一种典型的次生纳米颗粒物,并认为其可能与人类活动及燃煤......阅读全文
科学家发现可追踪燃煤活动的纳米级颗粒物
华东师范大学教授杨毅等与美国弗吉尼亚理工大学教授Hochella等合作,发现一种新型的次生Magnéli相氧化钛在煤灰中广泛存在,并具有潜在的生物毒性。这种新型纳米颗粒物的发现不仅可以作为指示器示踪全球的煤燃烧活动,而且对于了解燃煤引发的人类健康风险具有重要意义。相关研究发表在日前出版的《自然—
科学家发现可追踪燃煤活动的纳米级颗粒物
今天,记者从华东师范大学获悉,该校地理科学学院杨毅教授、刘敏教授和化学与分子工程学院教授葛建平教授与国内外多个研究机构合作,在人类活动产生的纳米级颗粒的鉴别和环境毒理学意义研究方面取得了重要进展,他们首次发现一种新型的次生Magn li相氧化钛在煤灰中广泛存在,并具有潜在的生态毒性。 这种
何为煤的灰熔点它对煤燃烧有何影响
煤的灰熔点又叫煤灰熔融性,是在规定条件下得到的随加热温度而变的煤灰(试样)变形、软化和流动特征物理状态,是动力用煤和气化用煤的一个重要的质量指标,可以反映煤中矿物质在锅炉中的动态,根据它可以预计锅炉中的结渣和沾污作用。煤灰的熔点低,在炉运行时易发生结焦。所以在运行中要随时注意,炉膛的燃烧情况,发
纳米氧化钛的重要应用介绍
1、纳米二氧化钛可作为锂电池、太阳能电池原料 纳米二氧化钛(T30D)添加到锂电池里,可提高锂电池容量及循环稳定性,特别是循环时放电电压平台的稳定性,可有效提高电池在多次充放电过程中的电化学稳定性和热稳定性,电池在使用过程中更稳定、更耐用。 2、二氧化钛(T25F)纺织上可以替代PVA 在
煤粉燃烧器的相关介绍
分旋流式和直流式两种。 ① 旋流式煤粉燃烧器:主要由一次风旋流器、二次风调节挡板(旋流叶片或蜗壳)和一、二次风喷口组成(图1 旋流式煤粉燃烧器)。它可以布置在燃烧室前墙、两侧墙或前后墙。输送煤粉的空气称为一次风,约占燃烧所需总风量的15~30%。煤粉空气混合物通过燃烧器的一次风喷口喷入燃烧室。
一吨煤燃烧产生多少voc
1吨煤 假设完全是碳的话 就是1000000g碳 1000000g/(12g/mol)=83333.3mol C+O2 =点燃= CO2 所以完全燃烧后生成83333.3molCO2 标准状况下的体积=83333.3*22.4=1866666.7L=1866.7立方米。
关于纳米氧化钛的其他功能介绍
纳米二氧化钛对某些塑料、氟里昂及表面活性剂SDBS也具有很好的降解效果。 还有人发现,TiO2对有害气体也具有吸收功能,如含TiO2的烯烃聚合物纤维涂在含磷酸钙的陶瓷上可持续长期地吸收不同酸碱性气体。 鉴于以上功能,纳米二氧化钛具有非常广阔的前景。对它的研究和利用会给人们的生活带来巨大改变。
关于纳米氧化钛的抗菌特点介绍
在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米二氧化钛可以制
预热燃烧技术让低阶煤利用清洁高效
吕清刚研究煤燃烧技术是从2004年开始的。当时,这个中科院工程热物理所的研究员,提出了煤炭的预热燃烧技术。就此他在实验室里开始了无休止的试验。 在煤炭领域,有一种低阶煤,就是煤化程度较低的煤。我国低阶煤储量巨大,约占煤炭探明储量的一半以上。低阶煤通过热解工艺廉价地得到油气,残留物是热解半焦。由
简述纳米二氧化钛的分类
一.按照晶型可分为:金红石型纳米钛白粉和锐钛型纳米钛白粉。 二.按照其表面特性可分为:亲水性纳米钛白粉和亲油性纳米钛白粉。 三.按照外观来分:有粉体和液体之分,粉体一般都是白色,液体有白色和半透明状。
纳米氧化钛的光催化功能的介绍
纳米二氧化钛采用液相法制备出的二氧化钛具有粒子团聚少、化学活性高,粒径分布窄、形貌均一等特性,具有很强的光催化性能,已广泛应用于环保中。 (1)气体净化 环境有害气体可分为室内有害气体和大气污染气体。室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫醇、硫化氢及氨气等。纳米二氧化钛
关于纳米氧化钛的基本信息介绍
纳米氧化钛是一种物质,其具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。 纳米二氧化钛还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天
煤燃烧之后氮氧化物流量如何计算
流量的计算是根据你的风孔截面积和风速算出来的.单位时间多少体积.要计算氮氧化物的流量还需要知道氮氧化物占总气体量的比例.
纳米催化剂让水“燃烧”
研究人员使用新的纳米催化剂,利用阳光将水分子分解,最终制出氢气燃料 技术总是在寻找各种方法,使能源更容易地变“绿”。前不久,来自美国纽约州的研究人员制造出了一种新型长效催化剂,能够利用太阳光的能量,经过一系列反应,最终产生氢气。氢气是一种无碳燃料。 《科学》杂志在线报道称
采用纳米颗粒物追踪分析技术进行纳米金测定
引用纳米金胶通常用于多种用途,例如:透射电子显微镜(TEM)/扫描电子显微镜(SEM)分析,作为免疫抗体和生物感应器的抗体/蛋白质标签,作为催化剂,以及与聚合材料混合时作为生物支架。 背景仪器提供了独一无二的功能,可以在液态悬浮中直接观测并检测纳米颗粒的粒径。这种逐个颗粒的可视化和分析能力可以克服一
采用纳米颗粒物追踪分析技术进行纳米金测定
引用纳米金胶通常用于多种用途,例如:透射电子显微镜(TEM)/扫描电子显微镜(SEM)分析,作为免疫抗体和生物感应器的抗体/蛋白质标签,作为催化剂,以及与聚合材料混合时作为生物支架。 背景纳米颗粒物追踪分析技术可以在液态悬浮中直接观测并检测纳米颗粒的粒径。这种逐个颗粒的可视化和分析能力可以克服一些技
关于纳米二氧化钛的基本介绍
纳米二氧化钛是白色疏松粉末,屏蔽紫外线作用强,有良好的分散性和耐候性。可用于化妆品、功能纤维、塑料、涂料、油漆等领域,作为紫外线屏蔽剂,防止紫外线的侵害。也可用于高档汽车面漆,具有随角异色效应。 纳米级二氧化钛,亦称钛白粉。直径在100纳米以下,产品外观为白色疏松粉末。具有抗线、抗菌、自洁净、
纳米氧化钛的防雾及自清洁功能
TiO2薄膜在光照下具有超亲水性和超永久性,因此其具有防雾功能。如在汽车后视镜上涂覆一层氧化钛薄膜,即使空气中的水分或者水蒸气凝结,冷凝水也不会形成单个水滴,而是形成水膜均匀地铺展在表面,所以表面不会发生光散射的雾。当有雨水冲过,在表面附着的雨水也会迅速扩散成为均匀的水膜,这样就不会形成分散视线
简述纳米二氧化钛的抗菌原理
纳米二氧化钛在光催化作用下使细菌分解而达到抗菌效果的。由于纳米二氧化钛的电子结构特点为一个满 TiO2的价带和一个空的导带 ,在水和空气的体系中 , 纳米二氧化钛在阳光尤其是在紫外线的照射下 ,当电子能量达到或超过其带隙能时 ,电子就可从价带激发到导带 ,同时在价带产生相应的空穴 ,即生成电子、
锂电材料纳米二氧化钛的作用机理
气相法纳米二氧化钛具有大的比表面积,表面原子数、表面能和表面张力随着粒径的下降急剧增加,小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等导致纳米微粒的热、磁、光、敏感特性和表面稳定性等不同于常规粒子。由于TiO2电子结构所具有的特点,使其受光时生成化学活泼性很强的超氧化物阴离子自由基和氢氧
锂电材料纳米二氧化钛的应用特性
1、对入射可见光基本无散射作用,具有很强的屏蔽紫外线能力和优异的透明性,作为一种新型材料已广泛应用于化妆品、涂料、油漆等产品中。 2、用于塑料、橡胶和功能纤维产品,它能提高产品的抗老化能力、抗粉化能力、耐候性和产品的强度,同时保持产品的颜色光泽,延长产品的使用期 3、用于油墨、涂料、纺织,能
概述锂电材料纳米二氧化钛的功能
纳米TiO2具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。纳米TiO2还具有很高的化学稳定性、热稳定性、超亲水性、非迁移性,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中、锂电池中。
简述锂电材料纳米二氧化钛的毒性
纳米二氧化钛毒理报告(2013年日本厚生劳动省报告) 急性口毒:5000mg/kg 皮肤刺激性:阴性 慢性毒性:0.15mg/m3(呼吸) 生殖与发育毒性:无法判断(现实生活无法实现试验中的投毒方式和高浓度) 遗传毒性(致癌):阳性(可能是由自由基产生)
关于纳米氧化钛的防紫外线功能介绍
纳米氧化钛(T25)既能吸收紫外线,又能反射、散射紫外线,还能透过可见光,是性能优越、极有发展前途的物理屏蔽型的紫外线防护剂。 纳米氧化钛的抗紫外线机理: 按照波长的不同,紫外线分为短波区190~280 nm、中波区280~320 nm、长波区320~400nm。短波区紫外线能量最高,但在经
简述锂电材料纳米二氧化钛的应用技巧
(1)在气相法纳米二氧化钛中加入有机染料敏化剂或过渡金属元素,可以增大利用光波长范围。 (2)将气相法纳米二氧化钛附着在活性炭上,其催化性能将大大提高。 (3)在气相法纳米二氧化钛中加入亲水型气相二氧化硅,其催化性能也可得到提高。
锂电材料纳米二氧化钛的其它功能介绍
纳米二氧化钛对某些塑料、氟里昂及表面活性剂SDBS也具有很好的降解效果。 还有人发现,TiO2对有害气体也具有吸收功能,如含TiO2的烯烃聚合物纤维涂在含磷酸钙的陶瓷上可持续长期地吸收不同酸碱性气体。 鉴于以上功能,纳米二氧化钛具有非常广阔的前景。对它的研究和利用会给人们的生活带来巨大改变。
纳米二氧化钛污水治理技术暗藏生态风险
记者从中科院合肥物质科学研究院获悉,该院技术生物所许安研究员课题组,以秀丽线虫为模型,在二氧化钛纳米颗粒(TiO2 NPs)与重金属(镉、砷和镍)联合暴露的生物效应方面取得新进展。相关成果日前被Elsevier旗下期刊《生态病理学与环境安全》接受在线发表。 随着二氧化钛纳米材料的广泛应用,尤其
简述锂电材料纳米二氧化钛的制备方法
制备纳米TiO2的方法很多,基本上可归纳为物理法和化学法。物理法又称为机械粉碎法,对粉碎设备要求很高;化学法又可分为气相法(CVD)、液相法和固相法。 物理沉积 物理气相沉积法(PVD)是利用电弧、高频或等离子体等高稳热源将原料加热,使之气化或形成等离子体,然后骤冷使之凝聚成纳米粒子。其中以
纳米改性煤沥青研制成功
国日用化学工业研究院与山西喜跃发公司近日签订纳米煤沥青在道路中的应用技术开发及产业化示范合作战略项目,对中国日化院研发的纳米改性煤沥青进行转化推广。 纳米改性煤沥青是将焦炭副产品煤沥青经过纳米技术改性生产的高等级筑路材料,用于补充或替代道路石油沥青。路用纳米改性煤沥青属于新型筑路沥青材料,
柴火炉三次燃烧气化炉加煤可以不
能的。民用柴煤两用汽化炉,标准规定了民用柴煤两用气化炉的术语和定义、结构、技术要求、试验方法、检验规则、标识、包装、运输和贮运。标准适用于用煤、柴等为燃料进行气化燃烧的炉具。所以是可以烧煤的。民用柴煤两用气化炉由燃气灶、检查器、气化系统通道、炉体、风机、分离筛、过滤片、集液箱等结构组成,将炉具与取暖