痕量植物激素分析研究获得进展

近日,中国科学院大连化学物理研究所微型分析仪器研究组研究员关亚风、副研究员耿旭辉团队在微量样品中痕量植物激素分析检测研究中取得新进展。该团队发展了一种微型基质固相分散(microscale MSPD)萃取的前处理方法,能够有效地处理亚毫克级植物样品,方法简单、重复性好且收率高。同时,研究团队研发了一种新型的衍生试剂用于柱前衍生,从而极大地提高了赤霉素的质谱检测灵敏度。相关研究成果发表在Analytical Chemistry上。 植物激素是植物体内合成的调控植物生长发育的信号分子,准确检测植物体内激素的种类和含量对于深入揭示植物生命现象具有至关重要的作用。近年来,随着“植物激素作用的分子机理”自然科学基金重大研究计划的启动,国内大批的研究机构投身到植物激素的分析研究中来。但由于某些激素,尤其是赤霉素在植物体内的含量极低,而且植物体内的代谢物组成非常复杂,基质干扰严重,使得样品前处理过程变得十分繁琐。加之,激素调控的信号传导......阅读全文

痕量植物激素分析研究获得进展

  近日,中国科学院大连化学物理研究所微型分析仪器研究组研究员关亚风、副研究员耿旭辉团队在微量样品中痕量植物激素分析检测研究中取得新进展。该团队发展了一种微型基质固相分散(microscale MSPD)萃取的前处理方法,能够有效地处理亚毫克级植物样品,方法简单、重复性好且收率高。同时,研究团队研发

化学增敏UPLCMS分析痕量植物激素

  2015年10月17日,第二届全国质谱分析学术报告会在浙江大学紫荆港校区体育馆盛大开幕,在5位院士的精彩报告后,多位学者做了高水平的大会报告。   中科院化学所陈义研究员:化学增敏UPLC-MS分析痕量植物激素  中国科学院化学研究所陈义研究员做题为《化学增敏UPLC-MS分析痕量植物激素》的

植物激素调控基因研究获进展

  中科院上海药物研究所徐华强与中科院遗传与发育生物学研究所李家洋、美国温安洛研究所Karsten Melcher等合作,在植物中发现了一个与人体中特定信号机制非常相似的重要的分子机制,该机制与人类早期胚胎发育和癌症等疾病有着密切联系。相关研究日前在线发表于《科学进展》。  植物中复杂的分子网络调控

植物褪黑激素研究获进展

  中科院武汉植物园植物水分胁迫生物学学科组,近期对植物褪黑素诱导狗牙根对胁迫抗性的分子机理展开了系列研究,并从多角度解析了褪黑素在狗牙根胁迫应答中的生理机制。  研究发现,盐、干旱和冷胁迫诱导了狗牙根体内褪黑素的含量,外源褪黑素处理可显著提高狗牙根对这些胁迫的抗性。同时,褪黑素可调控活性氧代谢、胁

科研人员在兰科植物研究方面获得进展

15日从中科院成都生物研究所获悉,中科院成都生物研究所植物多样性研究团队利用Illumina测序技术分别研究了极小种群之一的巴郎山杓兰和对叶杓兰的叶绿体基因组特征,并基于叶绿体基因组数据重建了兰科植物5个亚科中的47个物种的系统发育树,为阐明杓兰属和兰科植物的系统发育关系和分类关系作出了重要贡

遗传发育所在植物抗病蛋白的结构功能分析研究中进展

  植物细胞内抗病蛋白特异性识别病原菌后激发强烈的抗病反应,这类抗病反应往往伴有局部的细胞死亡。但抗病蛋白介导的抗病与细胞死亡的因果关系多有争议、其亚细胞分区定位与死亡信号的关系也不是很清楚。   中科院遗传与发育生物学研究所沈前华课题组系统地研究了大麦白粉菌抗病蛋白MLA10结构与

中国科研人员在兰科植物研究方面获得进展

  中科院成都生物研究所植物多样性研究团队利用Illumina测序技术分别研究了极小种群之一的巴郎山杓兰和对叶杓兰的叶绿体基因组特征,并基于叶绿体基因组数据重建了兰科植物5个亚科中的47个物种的系统发育树,为阐明杓兰属和兰科植物的系统发育关系和分类关系作出了重要贡献。  据了解,兰科是被子植物中最大

广州能源所植物修复重金属研究获得进展

  植物修复技术(Phytoremediation)是一种环境友好的土壤重金属污染修复技术,通过种植和收获对重金属具有较强耐性和富集能力的植物达到降低土壤中重金属含量的目的,具有安全、经济、高效等优点,逐渐发展成为污染治理的重要途径之一。具体说来,就是利用超积累植物治理重金属污染土壤

大气所在植物个体资源竞争与群体结构特性分析研究中获进展

生态系统是复杂的动态平衡系统。一方面,植物个体一直处在生长变化中,个体间差异巨大,且邻近个体间具有复杂的相互作用(主要表现为资源竞争);另一方面,由大量个体组成的植物群落一般具有稳定的结构特征(如林冠高度分布、分层结构等)。如何准确刻画生态系统不同尺度的结构特征及其演变是生态学研究的核心问题之一,也

大气所在植物个体资源竞争与群体结构特性分析研究中获进展

生态系统是复杂的动态平衡系统。一方面,植物个体一直处在生长变化中,个体间差异巨大,且邻近个体间具有复杂的相互作用(主要表现为资源竞争);另一方面,由大量个体组成的植物群落一般具有稳定的结构特征(如林冠高度分布、分层结构等)。如何准确刻画生态系统不同尺度的结构特征及其演变是生态学研究的核心问题之一,也

植物激素茉莉酸的信号传导机理研究获进展

  茉莉酸(Jasmonate,JA)激素是植物体内一类非常重要的脂类生长调节物质,参与调控植物某些重要的生长发育过程以及对环境因子的响应,如叶片表皮毛的起始、花青素的积累及抗冻害反应等。根毛是根表皮细胞特化形成的一种单细胞管状突出物,它们能有效增加根的表面积,促进植物对水分和养分的吸收,从而在植物

植物激素的作用

植物激素是植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长发育与分化。

植物激素的特征

荷尔蒙这个词来源于希腊语,意思是启动。植物激素影响基因表达和转录水平、细胞分裂和生长。它们是在植物内自然产生的,尽管真菌和细菌会产生非常相似的化学物质,它们也会影响植物的生长。大量相关的化合物是由人类合成的。它们用于调节栽培植物、杂草和体外生长的植物和植物细胞的生长;这些人造化合物被称为植物生长调节

植物激素的作用

植物激素是植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长发育与分化。

植物激素的分类

即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethylene,ETH)和油菜素甾醇(brassinosteroid,BR)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响

什么是植物激素?

植物激素是信号的分子,内产生的植物,发生在非常低的浓度。植物激素控制植物生长和发育,从各个方面胚胎发生,的调节器官大小,病原体防御,应力耐受性,并通过对生殖发育。与动物不同(其中激素的产生仅限于专门的腺体)每个植物细胞都能产生激素。温特和蒂曼创造了“植物激素”一词,并在他们1937年出版的书名中使用

植物激素的分类

即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethylene,ETH)和油菜素甾醇(brassinosteroid,BR)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响

植物激素有哪些

生长素、赤霉素、细胞分裂素、脱落酸、乙烯、油菜素甾醇等。1、生长素生长素是第一个被发现的植物激素。生长素中最重要的化学物质为3-吲哚乙酸。生长素有调节茎的生长速率、抑制侧芽、促进生根等作用,在农业上用以促进插枝生根,效果显著。2、赤霉素赤霉素是一类非常重要的植物激素,参与许多植物生长发育等多个生物学

植物激素的特点

五大类植物激素分为生长素,赤霉素,细胞分裂素,脱落酸和乙烯,其作用机理都是能促进细胞生长,具有以下特点:植物生长素与动物生长素完全不同。土壤中的某些微生物也可以分泌植物激素,影响植物生长,还有就是生长素作用尤为诱导植物体内营养物质向生长素浓度高处运输,以达到促进生长目的。

植物激素的作用

植物激素是植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长发育与分化。

科学家在植物激素调控基因研究中取得进展

  中国科学院上海药物研究所徐华强与中国科学院遗传与发育生物学研究所李家洋、美国温安洛研究所Karsten Melcher合作,在植物中发现了一个与人体中特定信号机制非常相似的重要的分子机制,该机制与人类早期胚胎发育和癌症等疾病有着密切的联系。研究成果在线发表在7月24日的Science Advan

其他植物激素的介绍

主要有油菜素甾醇、水杨酸、茉莉酸等,比较公认的第六大类植物激素是油菜素甾醇(Brassinosteroid)。油菜素甾醇是甾体类激素,与动物甾体激素的作用机理不同。其具有促进细胞伸长和细胞分裂、促进维管分化、促进花粉管伸长而保持雄性育性、加速组织衰老、促进根的横向发育、顶端优势的维持、促进种子萌发等

乙烯植物激素的应用

乙烯是气体,在田间应用不方便。一种能释放乙烯的液体化合物2-氯乙基膦酸(商品名乙烯利)已广泛应用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。

关于植物激素的简介

  植物激素(Phytohormone)亦称植物天然激素或植物内源激素。是指植物体内产生的一些微量而能调节(促进、抑制)自身生理过程的有机化合物。已知植物体内产生的激素有六大类,即生长素、赤霉素、细胞分裂素、脱落酸、乙烯和油菜素甾醇。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样

植物激素存在的部位

生长素在低等和高等植物中普遍存在。生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。用胚芽鞘切段证明植物体内的生长素通常只能从植物的形态上端(根尖分生区或芽)向下端(茎)运输,而不能相反

植物激素的研究历史

C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的

植物激素的作用介绍

1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性

有害痕量元素排放趋势研究获进展

2005年中国6大行政区燃煤大气砷排放分布相关资料:  痕量元素(trace element) ,在常见的地球化学文献中,人们常将地壳中除氧(O)、氢(H)、硅(Si)、铝(Al)、铁(Fe)、钙(Ca)、镁(Mg)、钠(Na)、钾(K)、铊 (Ti)这10种元素(它们的总重量丰度共

植物逆境激素脱落酸信号转导途径研究获重要进展

近日,华南师范大学生命科学学院研究员张钟徽团队与聊城大学副教授赵庆臻团队合作,在国家自然科学基金等项目的资助下,在植物逆境激素脱落酸(ABA)信号转导途径研究方面取得重要进展,发现了U-Box型泛素连接酶PUB35参与调控ABA信号通路的机制。相关成果在线发表于《植物细胞》(The Plant Ce

植生生态所植物激素互作与性状调控研究取得进展

  种子从休眠向萌发转变是植物生命周期中的一个关键转折点。种子休眠是高等植物长期进化选择的结果,对于植物物种繁衍和渡过恶劣环境条件具有关键性作用。在农业生产方面,种子的休眠性能有效地防止种子成熟后在潮湿环境下穗发芽而导致产量和品质下降。前人的研究表明,ABA是唯一已知的能诱导和维持种子休眠的激素。中