烷烃的红外光谱特征
烷烃中只有C-H键组成的C-H,CH2,CH3基团,纯烷烃的吸收峰只有C-H的伸缩、弯曲振动和C-C骨架振动。 1、νC-H 烷烃的C-H伸缩振动频率 一般不超过3000cm-1,甲基和亚甲基的C-H伸缩分别有对称和不对称振动相应出现四个吸收峰,甲基的C-H伸缩振动,对称的出现在2872cm-1,不对称的出现在2962cm-1;亚甲基的对称出现在2853cm-1,不对称的出现在2926 cm-1。一般不对称的吸收强度稍强,在高分辨的红外仪(光栅型),可以在2853-2962 cm-1处,清楚地观察到这四个峰,而在低分辨的仪器中,两两重叠只能看到两个峰。如下图: 注意:环丙烷的VC-H移向高频,出现在3080-3040cm-1(S) 叔C-H的伸缩吸收很弱,( 2890cm-1左右 )通常消失在其它脂肪族的C-H吸收中,对于鉴定分析用途不大。 2、δC-H : C-H弯曲振动 在1460cm-1和1380c......阅读全文
红外光谱工作原理
直接用红外光分光当然也可以,最早的红外光谱仪就是这样的,但是这样的红外光谱仪采集的效率很低,而且信噪比也不高,后来逐渐被傅立叶变换红外光谱仪做取代。红外光谱仪一般分为两类,一种是光栅扫描的,就是直接用红外光分光。目前很少使用了;另一种是迈克尔逊干涉仪扫描的,称为傅立叶变换红外光谱,这是目前最广泛使用
什么是红外光谱
红外光谱原理概述红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的
什么是红外光谱
红外光谱原理概述红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的
红外光谱的应用
红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理
什么是红外光谱
红外光谱原理概述红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的
什么是红外光谱
红外光谱原理概述红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的
什么是红外光谱
红外光谱原理概述红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的
如何分析红外光谱
你可以按如下步骤来:(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+ (T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),例如:比如苯:C6H6,不饱和度=6+
红外光谱的应用
红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理
红外光谱的原理
红外光谱的原理:当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间
红外光谱实验技术
红外光谱实验技术一. 实验目的1. 掌握固体和液体样品的常规制样方法2. 了解傅里叶变换红外光谱仪的工作原理和使用方法3. 了解ATR光谱附件的工作原理并掌握其使用方法 二. 实验内容1.固体样品的制备方法:压片法将固体样品与金属卤化物(KBr)按适当比例混合,于玛瑙研钵中快速研磨成极细的粉末(~2
红外吸收光谱测定
红外吸收光谱测定一、实验目的1. 学习红外光谱法的基本原理及仪器构造。2. 了解红外光谱法的应用范围。3. 通过实验初步掌握各种物态的样品制备方法。二、实验原理红外光谱反映分子的振动情况。当用一定频率的红外光照射某物质时,若该物质的分子中某基团的振动频率与之相同,则该物质就能吸收此种红外光,使分子由
红外光谱的原理
红外光谱的原理:当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间
如何分析红外光谱
你可以按如下步骤来:(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+ (T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),例如:比如苯:C6H6,不饱和度=6+
红外光谱的原理
红外光谱的原理当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的
红外光谱法
一定频率的红外光辐照能导致被照射物质分子在振动、转动能级上的跃迁。当分子中某些化学键或基团(具有偶极特性)的振动频率与红外辐射的频率一致时,分子便吸收此红外辐射(一种共振吸收)。若以频率连续改变的红外光辐照试样,由于试样对不同频率的红外光的吸收不同,便得到以吸光度A或透光率T为纵坐标,红外辐射波数或
红外光谱的分区
1. 红外光谱的分区 通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~300μm)。一般说来,近红外光谱是由分子的倍频、合频产生的;中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。 由于绝大多数
红外光谱应用范围
在做红外光谱(IR)测试时,科学指南针检测平台工作人员在与很多同学沟通中了解到,好多同学对IR不太了解,针对此,科学指南针检测平台团队组织相关同事对网上海量知识进行整理,希望可以帮助到科研圈的伙伴们; 19世纪初科研人员证实了红外光的存在,二十世纪初进一步了解到不同官能团具有不同的红外吸收频率
烯烃红外光谱特征
烯烃分子有三类特征吸收峰(ν=C-H、νC=C、δ=C-H) 1、ν=C-H (包括苯环的C-H、环丙烷的C-H)在3000cm-1以上,苯出现在3010-3100cm-1的范围内,在甲基及亚甲基伸缩振动大峰左侧出现一个小峰,这是识别不饱和化合物的一个有效特征吸收。 2、νC=C 孤立
傅立叶变换红外光谱
1.基本原理红外光谱又称为分子振动转动光谱,是一种分子吸收光谱。当一束具有连续波长的红外光通过物质时,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级。因此,物质分子吸收红外辐射发生振动和转动能级跃迁的波长处就出现红外
什么是红外光谱
红外光谱原理概述红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的
红外光谱分析法红外光谱产生的条件
1. 红外光的频率与分子中某基团振动频率一致;2. 分子振动引起瞬间偶极矩变化完全对称分子,没有偶极矩变化,辐射不能引起共振,无红外活性, 如:N2 、 O2 、 等;非对称分子有偶极矩,属红外活性,如 HCl。
近红外光谱仪的近红外光谱分析原理
近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波, ASTM 定义的近红外光谱区的波长范围为 780~2526nm (12820~3959cm1),习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两
红外光谱法在矿物绝缘油润滑油结构族组成测定上的应用
摘要: 矿物油是指从石油中提炼精制的液体绝缘材料。石油的主要成分是烷烃、环烷烃和芳香烃,这些组分的电气性能和老化稳定性优良。根据具体用途适当的控制各组分的含量,可以得到变压器油、开关油等绝缘油以及各种润滑油。例如,芳香烃成分可有效吸附气体可用于制作电缆油或电容器油、环烷烃成分可以降低油份的凝固点用于
线性烷烃构象的结构特点
线性烷烃构象(linear alkane conformation),拥有交错式(staggered)、重叠式(eclipsed)与间扭式(gauche)。乙烷是最简单的含有C-C单键的化合物,如果乙烷分子中的一个碳原子不动,另一个碳原子围绕C-C键旋转时,则一个碳原子上的三个氢原子相对另一个碳原子
环烷烃的结构特性
环烷烃:在环烃分子中,碳原子间以单键相互结合的叫环烷烃,是饱和脂环烃。具有三环和四环的环烷烃,稳定性较差,在一定条件下容易开环。五环以上的环烷烃较稳定,其性质与烷烃相似。常见的环烷烃有环丙烷、环丁烷、环戊烷、环己烷等。芳香烃:一般是指分子中含有苯环结构的烃。根据分子中所含苯环的数目以及苯环间的联结方
烷烃的命名步骤及原则
(1)选主链 选择最长的碳链为主链,有几条相同的碳链时,应选择含取代基多的碳链为主链。(2)定编号 给主链编号时,从离取代基最近的一端开始。若有几种可能的情况,应使各取代基都有尽可能小的编号或取代基位次数之和最小。(3)书写名称 用阿拉伯数字表示取代基的位次,先写出取代基的位次及名称,再写烷烃的名称
红外光谱仪特点
特点编辑1、 只需三个分束器即可覆盖从紫外到远红外的区段;2、 ZL干涉仪,连续动态调整,稳定性极高;3、 可实现LC/FTIR、TGA/FTIR、GC/FTIR等技术联用;4、 智能附件即插即用,自动识别,仪器参数自动调整;5、 光学台一体化设计,主部件对针定位,无需调整。
红外光谱仪应用
应用于染织工业、环境科学、煤结构研究、石油工业、日用化工等研究领域。当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。使用红外光谱仪对材料进行定性分析,广泛应用于各大、专院校,科研院所及厂矿企业。
顺反异构的红外光谱
有机化合物的红外光谱对于鉴别某种官能团的存在与否是相当有力的,而标志某官能团的特征吸收又与化合物的构造有着密切的联系,在有些场合,构造的差别甚至会使某一特征吸收消失。