人造器官模型为乙肝药物开发打下基础
乙型肝炎病毒(HBV)感染目前无法治愈,它在全球影响几亿人。由于缺乏能用于测试潜在疗法的模型,治疗领域发展缓慢。近日,伦敦帝国理工学院(Imperial College London)的科学家们在人造器官模型中测试了病毒感染,这一成功有望加速该领域研究。相关论文已发表在《Nature Communications》上。论文主要作者Marcus Dorner博士(图片来源:Imperial College London) 人造器官能模拟整个器官的细胞构成和生理机能,在药物安全性测试中能作为动物模型的替代品,但迄今为止它们还没有被用于测试传染性疾病与器官的相互作用。帝国理工的研究者使用了人造肝脏的器官芯片(Organs-on-chips),测试了它对乙型肝炎病毒感染的反应,来确定病原体与人造器官的相互作用。 器官芯片将人体活细胞放置在与目标器官的生理、机械和结构都相似的脚手架上。细胞周围有导管模拟流过身体的血流,药物或者病毒......阅读全文
美国院士用智能眼镜监控器官芯片
《碟中谍4》中有这样一个片段不知道大家是否还有印象,特工利用安装在眼睛上的智能隐形眼镜来寻找和锁定目标人物。有人曾预言这项技术在20年内都不会实现,但事实是已经有人在研究它了。 谷歌眼镜(Google Glass)是由谷歌公司于2012年4月发布的一款“拓展现实”眼镜,它具有和智能手机一样的功
多器官微流控芯片技术及其应用
微流控芯片技术(Microfluidics)也被称为芯片实验室(Lab-On-a-Chip, LOC),涉及物理、化学、医学、流体、电子、材料、机械等多学科交叉的研究领域。通过微通道、反应室和其他某些功能部件,对流体进行精准操控,对生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单
类器官芯片在肿瘤研究中的应用
在过去几十年中,干细胞生物学的进展导致在体外创造了一类新的3D细胞样细胞,称为类器官,因为它们的空间形态与原始器官相似。利用该技术从体外培养的肿瘤组织中形成的肿瘤类有机物在很大程度上保留了肿瘤细胞在体内的生物学特性,具有成本低、操作简单等优点,弥补了传统肿瘤实验模型的缺陷。1、肿瘤发生发展机制肿瘤是
国内首个器官芯片国家标准正式发布
近日,我国首个器官芯片领域的国家标准《皮肤芯片通用技术要求》(GB/T 44831-2024)正式发布。这标志着我国在器官芯片标准化领域迈出了重要一步,对于推动该领域的科学研究和产业应用的规范化、标准化发展具有重大意义。11月3日,记者从东南大学获悉,该校苏州医疗器械研究院院长顾忠泽团队牵头完成
器官芯片模型中如何进行高质量的血管3D图像分析?
血管生成是由预先存在的血管所形成和重塑的新血管及毛细血管的生理过程。这可以通过血管和毛细血管的内皮细胞出芽或分裂来实现。血管细胞通过降解细胞外基质对适当的刺激做出反应,随后诱导内皮细胞增殖和迁移。细胞经历过这些过程后,形成一个包含腔的管,一个动态的空间,促进血液流动和氧、二氧化碳、NO和营养物质的交
器官培养
In vitro organ cultures (Nagy Lab)kidneylungslimb In Vitro Differentiation of ES Cells into: (Nagy Lab)Cardiac MuscleNeuronal LineagesCystic Embryoid
类器官
以下是一些可能有助于提高类器官的结构和功能完善程度的方法:优化培养条件:包括培养基成分、生长因子的组合和浓度、细胞外基质的选择和优化等。例如,通过筛选和调整各种细胞因子的比例,更好地模拟体内细胞生长的微环境。引入血管化和神经支配:开发新的技术手段来构建类器官中的血管网络和神经连接,以增强营养物质供应
“线粒体双相时钟”模型为器官配备专属“衰老GPS”
中国科学院上海营养与健康研究所研究员李昕研究组,通过解析人体多器官线粒体突变的“衰老图谱”,提出“线粒体双相时钟”模型,揭示了线粒体通过两种截然不同的模式编码器官衰老,进而同时编码了随机性和确定性衰老程序,统一了复制衰老与代谢衰老的观点分歧,为理解多器官异步衰老提供了新的时序观。5月27日,相关研究
双器官芯片模拟脂肪肝产生机制
原文地址:http://news.sciencenet.cn/htmlnews/2023/4/498326.shtm 科技日报北京4月11日电 (记者张梦然)日本京都大学集成细胞材料科学研究所(iCeMS)的科学家设计出一种新芯片,可将不同细胞类型保存在相互连接的微小腔室中,这一集成肠肝芯片(i
类器官芯片在医学研究中的应用介绍
类器官是体外诱导多能干细胞发育后含有至少一种细胞类型的器官复合体模型。在适当的空间限制下,具有相似粘附特性的干细胞将迁移到特定位置并自我组织分化,从而形成与体内靶器官相似的结构和功能特性。与2D细胞和动物模型相比,类有机物是具有细胞复杂性的生物体,更接近体内细胞的生长状态和功能结构,在模拟人体各器官
新型器官芯片技术解析疱疹性脑炎发病机制
近日,中国科学院大连化学物理研究所研究员秦建华团队利用器官芯片技术和多种人源细胞,建立了一种3D神经血管单元仿生芯片模拟脑内微环境,研究探索了单纯疱疹病毒脑炎的发病机制及潜在治疗靶点。相关成果发表在《自然-通讯》上。疱疹性脑炎(HSE)是最常见的散发病毒性脑炎,病情严重且预后较差。尽管抗病毒药物可以
器官芯片开拓新冠感染机制研究新视角
近日,大连化物所微流控芯片研究组(1807组)秦建华研究员团队受邀发表综述文章,系统总结了该团队在利用器官芯片开展感染性疾病研究方面的一系列成果,并对该领域的未来发展进行了展望。 感染性疾病多指由各种常见病原体(如细菌、真菌、病毒和寄生虫等)引起的机体疾病,可引起人体全身性病理症状,严重者可导
器官芯片(organsonchips)有哪些新进展?
器官芯片(organs-on-chips)是当今生物学研究中最热门的新工具之一。虽然它们听起来更像计算机组件,而不像人体部件,但科学家已经创建出各种器官的研究模型。《The Scientist》杂志近日介绍了这方面的进展。 科学家认为,这些工具最终将取代动物模型,从而推动药物开发和个性化医疗
脊髓器官芯片技术——为“渐冻人”点燃希望
前不久,著名物理学家和宇宙学家史蒂芬・霍金的离世,让其与之抗争55年的肌萎缩性脊髓侧索硬化症(ALS),再次受到世人关注。这种俗称“渐冻症”的疾病,为患者及其家庭带来巨大痛苦,它的最新治疗进展究竟如何?日前,美国西达赛奈医疗中心一项最新研究为“渐冻人”带来治疗新希望。 ALS是一种侵犯脊髓
即插即用可定制-多器官芯片演绎人体原理
即插即用可定制 多器官芯片演绎人体原理将成为人类疾病和药物测试个体化研究绝佳模型 美国哥伦比亚大学工程系和医学中心的一组研究人员报告说,他们已经开发出一种多器官芯片形式的人体生理模型,该芯片由经过工程改造的人体心脏、骨骼、肝脏和皮肤组成,通过循环免疫细胞的血管流动,以重现相互依赖的器官功能。
3D器官芯片可实时监测细胞活动
英国剑桥大学网站近日发布公告称,该校研究人员开发出一种三维(3D)器官芯片,可实时监测细胞活动,有望用于开发新疗法,同时减少研究中实验动物的使用数量。 新设备基于导电聚合物海绵“支架”,研究人员将其组装成三维的电化学晶体管。细胞在支架内生长,然后将整个装置置于塑料管内,细胞所需营养可通过塑料管
我国器官芯片三项团体标准正式发布
近日,由中国科学院大连化学物理研究所牵头组织的《器官芯片通用术语》(T/CSB 0003-2024)、《器官芯片 肠》(T/CSB 0004-2024)和《器官芯片 肝》(T/CSB 0005-2024)三项团体标准,经中国生物工程学会批准正式发布,为器官芯片模型的互通认可和推广应用奠定了基础。器官
如何选择适合特定应用的类器官芯片技术?
选择适合特定应用的类器官芯片技术可以考虑以下几个方面:研究目的:明确您的研究是侧重于疾病建模、药物筛选、毒理学测试还是其他特定的生理过程研究。不同的类器官芯片技术在这些方面可能具有不同的优势。器官类型:根据您想要模拟的器官来选择。某些技术可能更适合模拟某些特定的器官,例如,某些芯片设计可能更适合构建
FDA-新合作,“器官芯片”或成毒理测试平台
生物技术公司 Emulate 宣布,已经与美国 FDA 下属的食品和兽医办公室(Office of Foods and Veterinary Medicine)签订了一项“合作研究和开发协议(Cooperative Research and Development Agreement ,CRAD
脊髓器官芯片技术——为“渐冻人”点燃希望
前不久,著名物理学家和宇宙学家史蒂芬・霍金的离世,让其与之抗争55年的肌萎缩性脊髓侧索硬化症(ALS),再次受到世人关注。这种俗称“渐冻症”的疾病,为患者及其家庭带来巨大痛苦,它的最新治疗进展究竟如何?日前,美国西达赛奈医疗中心一项最新研究为“渐冻人”带来治疗新希望。 ALS是一种侵犯脊髓
类器官模型长期稳定性的技术难题介绍
类器官模型在长期培养中面临着诸多技术挑战,难以长期保持活性和功能。一方面,随着培养时间的延长,类器官内部的细胞可能会出现基因变异、分化异常等问题,导致其功能逐渐偏离正常组织。另一方面,培养环境的细微变化,如营养物质的供应、代谢废物的积累、氧气浓度的波动等,都可能影响类器官的长期稳定性。例如,某些肠道
类器官芯片实现人体肝脏—胰岛互作仿生模拟
近日,中科院大连化学物理研究所研究员秦建华团队利用类器官芯片,建立了人诱导多能干细胞(hiPSC)来源的肝—胰岛类器官互作体系,在体外模拟人体肝脏—胰岛轴及其在生理和病理条件下的糖刺激响应,为糖尿病等复杂代谢性疾病研究和新药发现等提供了新策略和新技术。相关研究发表在《先进科学》上。糖尿病是一种以慢性
器官芯片技术再获突破医学科研应用前景广阔
近期,在美国波士顿召开的2016年器官芯片移动大会上,美国CN生物医疗公司展出了价值2600万美元的人体内脏芯片系统。虽然此前已有集合肝脏、肺和一部分肠道的生物芯片,但此次展出的系统首次连接了7个主要器官芯片,实现高度模拟人体生理机能的功能。 单个器官芯片的制作技术和微型集成电路芯片制作技术类
类器官芯片实现人体肝脏胰岛互作仿生模拟
近日,大连化物所微流控芯片研究组(1807组)秦建华研究员团队利用类器官芯片,建立了人诱导多能干细胞(hiPSC)来源的肝-胰岛类器官互作体系,在体外模拟人体肝脏-胰岛轴及其在生理和病理条件下的糖刺激响应,为糖尿病等复杂代谢性疾病研究和新药发现等提供了新策略和新技术。 糖尿病是一种以慢性高血糖为主
如何提高类器官芯片技术的生理相关性?
以下是一些可以提高类器官芯片技术生理相关性的方法:优化细胞培养条件:包括使用更接近体内细胞外基质的材料,调整培养基成分以模拟体内营养和激素环境等。引入多种细胞类型:除了主要的细胞类型,还应纳入相关的支持细胞、免疫细胞、血管内皮细胞等,以更全面地模拟体内细胞间的相互作用。构建血管化系统:创建类似于体内
在芯片上造器官,打造千亿级“蓝海”市场
把人体器官“微缩”进几厘米的透明的芯片中,看着薄膜、导管在其中纵横捭阖……在“芯片”上造“器官”,这一此前在科幻片中才有的情节如今已在生物学领域变成现实。 近日从东南大学传来消息,国内医药企业恒瑞医药研发的一款新药“HRS-1893片”获批开展临床试验。该新药拟用于治疗肥厚型心肌病以及心肌肥
如何验证类器官芯片技术的生理相关性?
用于验证类器官芯片技术生理相关性的方法:形态和结构比较:通过显微镜观察类器官芯片的形态和细胞组织结构,并与真实器官的组织学切片进行对比。例如,肾脏类器官芯片中的肾小管结构应与体内肾脏的肾小管在形态和细胞排列上具有相似性。基因和蛋白质表达分析:检测类器官芯片中关键基因和蛋白质的表达水平,并与体内器官相
类器官芯片技术未来还会有哪些创新和发展?
类器官芯片技术未来可能会有以下创新和发展:更复杂的器官模型:开发能够模拟更多复杂器官功能和相互作用的芯片,如内分泌系统、免疫系统等,以实现更全面的生理系统模拟。生物打印技术的融合:结合 3D 生物打印技术,实现更精确的细胞定位和组织结构构建,提高类器官芯片的复杂性和一致性。神经接口集成:与神经接口技
生物医学研究类器官芯片的研究进展
现有的生物医学研究模型主要是细胞系模型和动物模型。细胞系模型是简单、经济、最常见的,但单细胞的细胞生长模式的生长模式缺乏细胞-细胞、细胞-细胞基质间的相互作用,体外培养过程中会丢失细胞的异质性及其在体内的特性,使其无法模拟复杂的三维环境和组织细胞在体内的功能及相关的信号通路。动物模型可以近似于人类生
细胞培养技术在类器官芯片中的应用
细胞培养技术在类器官芯片中具有关键的应用,包括以下几个方面:细胞来源选择与获取:确定适合构建类器官芯片的细胞类型,如干细胞(胚胎干细胞、诱导多能干细胞)、原代细胞等,并通过适当的方法获取这些细胞。细胞扩增:在将细胞接种到类器官芯片之前,需要对细胞进行体外扩增,以获得足够数量的细胞。细胞分化诱导:通过