ICPAES干扰

1. 光谱干扰 ICP-AES的光谱干扰其数量很大而较难解决,有记录的ICP-AES的光谱谱线有50000多条,而且基体能引起相当多的问题。因此,对某些样品例如钢铁、化工产品及岩石的分析必须使用高分辨率的光谱仪。广泛应用于固定通道ICP-AES中的干扰元素校正能得到有限度的成功。ICP-AES中的背景较高,需离线背景校正,应用动态背景校正对增进准确度是很有效的。各种分子粒子(如OH)的谱峰或谱带对某些低含量的被测元素会引起一些分析问题,影响其在实际样品中检出限。 在ICP-MS中的背景是相当低的,典型的是小于5 C/S(计数/秒),这就是ICP-MS具有极好的检出限的一个主要理由。 2. 基体效应 与ICP-MS一样,ICP-AES可以应用内标来解决例如雾化室效应、试样与标准溶液之间粘度差异所带来的基体效应。 3. 电离干扰 仔细选用每个元素的分析条件或加入电离缓衡剂(如过量的I族元素)可......阅读全文

有关传感器的干扰源、干扰种类及干扰现象

有关传感器的干扰源、干扰种类及干扰现象 一、干扰问题的产生模拟传感器的应用非常广泛,不论是在工业、农业、国防建设,还是在日常生活、教育事业以及科学研究等领域,处处可见模拟传感器的身影。但在模拟传感器的设计和使用中,都有一个如何使其测量精度达到zui高的问题。 而众多的干扰一直影响着传感器的测量精度,

ICPMS的干扰——电离干扰

电离干扰 电离干扰是由于试样中含有高浓度的第I族和第II族元素而产生的,采用基体匹配、稀释试样、标准加入法、同位素稀释法、萃取或用色谱分离等措施来解决是有效的。

GFAAS干扰

1. 光谱干扰 使用氘灯背景校正的GFAAS有少许光谱干扰,但使用Zeeman 背景校正的GFAAS能去除这些干扰。 2. 背景干扰 在原子化过程中,针对不同的基体,应仔细设定灰化步聚的条件以减少背景信号。采用基体改进剂有助于增加可以容许的灰化温度。在很多GFAAS应用中,与氘灯扣背景相比,Zeem

ICPMS的干扰——基体酸干扰

基体酸干扰 必须指出,HCl 、HClO4、H3PO4和H2SO4将引起相当大的质谱干扰。Cl+ 、P+ 、S+离子将与其他基体元素Ar+ 、O+ 、H+结合生成多原子,例如35Cl 40Ar对75As 、35Cl 16O对51V的叠加干扰。因此在ICP-MS的许多分析中避免使用HCl 、HClO4

ICPMS-的干扰——质谱干扰

质谱干扰 ICP-MS中质谱的干扰(同量异位素干扰)是预知的,而且其数量少于300个,分辨率为0.8amu的质谱仪不能将它们分辨开,例如58Ni 对58Fe、 40Ar对40Ca、 40Ar16O对56Fe或40Ar-Ar对80Se的干扰(质谱叠加)。元素校正方程式(与ICP-AES中干扰谱线校正相

ICPMS的干扰——双电荷离子干扰

双电荷离子干扰双电荷离子产生的质谱干扰是单电荷离子M/Z的一半,例如138Ba2+对69Ga+,或208Pb2+对104Ru+。这类干扰是比较少的,而且可以在进行分析前将系统最佳化而有效地消除。

ICP光源的电离干扰、化学干扰和基体干扰相对较小的原因

试样引入ICP光源的主要方式有:雾化进样(包括气动雾化和超声雾化进样)、电热蒸发进样、激光或电弧和火花熔融进样,对于特定元素还可以采用氢化物发生法进样。其中,以气动雾化方式最为常用。原因包括(1)样品在ICP光源中的原子化与激发是在惰性气体Ar的氛围进行的,因此不容易氧化电离;(2)样品的原子化与激

光谱干扰

  总的来说,原子吸收法中干扰效应比原子发射光谱法要小得多,原因如下:   ①.AAS法中使用锐线光源,应用的是共振吸收线,而吸收线的数目比发射线少得多,光谱重叠的几率小,光谱干扰少;   ②.AAS法中,涉及的是基态原子,故受火焰温度的影响小。但在实际工作中,干扰仍不能忽视,要了解其产生的原因及消

TSQ如何消除干扰?

帖子:TSQ如何消除干扰?

交配干扰的定义

中文名称交配干扰英文名称mating disruption定  义用合成的性信息素或其类似物迷惑、干扰昆虫的定向与交配活动,以降低虫口密度和危害的一种方法。应用学科生态学(一级学科),化学生态学(二级学科)

氨氮消除干扰

去除余氯若样品中存在余氯,可加入适量的硫代硫酸钠溶液(ρ=3.5 g/L)去除。每加 0.5 ml 可去除 0.25 mg 余氯。用淀粉-碘化钾试纸检验余氯是否除尽。[2] 絮凝沉淀100 ml 样品中加入 1 ml硫酸锌溶液(100 g/L)和 0.1~0.2 ml 氢氧化钠溶液(ρ=250 g/

RNA干扰的定义

RNA干扰(RNA interference,RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。

干扰离子有哪些

氢氧根、碳酸根、亚硫酸根

RNA干扰的特点

1.高效性:Elbashir等在研究中发现分别为25 nmol/L与100 nmol/L的起始双链RNA产生的结果是一样的,只是高浓度起始的更有效些。将双链RNA浓度降低到1.5 nmol/L时产生的基因沉默效果变化不大,只有当浓度降低到0.05 nmol/L时,沉默的效果才消失。Holen等也证实

RNA干扰主体实验

siRNA表达载体构建好后,即可进行RNA干扰主体实验。RNA干扰主体实验的重点在于:成功将siRNA表达载体导入目的细胞如果目的细胞的质粒转染效率较低(低于70%),则应采用腺病毒或慢病毒载体,利用病毒载体的高感染率、高表达特性,更好地开展RNA干扰主体实验。设置好分组和对照按照nature的标准

RNA干扰的简介

  RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。

RNA干扰制备方法

化学合成许多国外公司都可以根据用户要求提供高质量的化学合成siRNA。主要的缺点包括价格高,定制周期长,特别是有特殊需求的。由于价格比其他方法高,为一个基因合成3—4对siRNAs 的成本就更高了,比较常见的做法是用其他方法筛选出最有效的序列再进行化学合成。最适用于:已经找到最有效的siRNA的情况

RNA干扰功能特点

1.高效性:Elbashir等在研究中发现分别为25 nmol/L与100 nmol/L的起始双链RNA产生的结果是一样的,只是高浓度起始的更有效些。将双链RNA浓度降低到1.5 nmol/L时产生的基因沉默效果变化不大,只有当浓度降低到0.05 nmol/L时,沉默的效果才消失。Holen等也证实

RNA干扰的概念

RNA干扰(RNA interference,RNAi)是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。基因沉默,主要有转录前水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修

RNA干扰回复实验

RNA干扰回复实验,主要是为了说明Off-target效应。Off-target效应Off-target effects(脱靶效应)最早由Dharmacon科学家Jackson和他的同事们提出(Fedorov,Y.,et al. "Off-targeting By siRNA Can Induce

shRNA干扰载体构建

产品技术背景pRI系列载体是基于III类RNA聚合酶启动子:人类H1启动子的专用于哺乳动物细胞RNA干扰的载体。H1启动子在哺乳动物细胞内合成类似siRNA分子的小分子RNA。由于H1启动子有精确的转录起始位点和终止信号,H1启动子转录产物精确生成人工设计的shRNA,shRNA经过RISC剪切后形

RNA干扰主体实验

siRNA表达载体构建好后,即可进行RNA干扰主体实验。RNA干扰主体实验的重点在于:成功将siRNA表达载体导入目的细胞如果目的细胞的质粒转染效率较低(低于70%),则应采用腺病毒或慢病毒载体,利用病毒载体的高感染率、高表达特性,更好地开展RNA干扰主体实验。设置好分组和对照按照nature的标准

RNA干扰实验技术

实验概要本文介绍了RNA干扰的原理及基本实验方法,包括了siRNA的设计、siRNA的制备和siRNA的转染等方法,及RNA干扰实验中的注意事项。实验原理近年来的研究表明,将与mRNA对应的正义RNA和反义RNA组成的双链RNA(dsRNA)导入细胞,可以使mRNA发生特异性的降解,导致其相应的基因

测定干扰及其抑制

(1)电离干扰  电离干扰(ionizationinterference)是由于待测元素在原子化过程中发生电离使参与吸收的基态原子减少而造成吸光度下降的现象。采用低温火焰和加入消电离剂可以有效地抑制和消除电离干扰。(2)基体干扰  基体干扰(matrixinterference),又称为物理干扰,指

自发荧光的干扰

自发荧光的干扰成为植物学成像的一大瓶颈,使得对生理状态下的组织和细胞内的物质追踪等应用变得异常困难。在各种去除自发荧光的各种方法中,徕卡白激光的Lightgate时间门控技术是目前最快捷而有效的一种方法,在去除自发荧光和杂散光的同时,又能保存下绝大部分真实的荧光信号,同时可应用于z-stack、时间

shRNA干扰载体构建

产品技术背景pRI系列载体是基于III类RNA聚合酶启动子:人类H1启动子的专用于哺乳动物细胞RNA干扰的载体。H1启动子在哺乳动物细胞内合成类似siRNA分子的小分子RNA。由于H1启动子有精确的转录起始位点和终止信号,H1启动子转录产物精确生成人工设计的shRNA,shRNA经过RISC剪切后形

ICPAES-干扰

1. 光谱干扰 ICP-AES的光谱干扰其数量很大而较难解决,有记录的ICP-AES的光谱谱线有50000多条,而且基体能引起相当多的问题。因此,对某些样品例如钢铁、化工产品及岩石的分析必须使用高分辨率的光谱仪。广泛应用于固定通道ICP-AES中的干扰元素校正能得到有限度的成功。ICP-AES中的背

RNA干扰回复实验

RNA干扰回复实验,主要是为了说明Off-target效应。Off-target效应Off-target effects(脱靶效应)最早由Dharmacon科学家Jackson和他的同事们提出(Fedorov,Y.,et al. "Off-targeting By siRNA Can Induce

RNA干扰回复实验

RNA干扰回复实验,主要是为了说明Off-target效应。Off-target效应Off-target effects(脱靶效应)最早由Dharmacon科学家Jackson和他的同事们提出(Fedorov,Y.,et al. "Off-targeting By siRNA Can Induce

质谱干扰离子

  质谱仪种类很多,不同类型的质谱仪主要差别在于离子源。离子源的不同决定了对被测样品的不同要求,同时,所得信息也不同。质谱仪的分辨率同样十分重要,高分辨质谱仪可给出化合物的组成式,对于未知物定性至关重要。因此,在进行质谱分析前,要根据样品状况和分析要求选择合适的质谱仪。  目前,有机质谱仪主要有两大