俄歇电子能谱(2)
基本原理物理原理入射电子束和物质作用,可以激发出原子的内层电子形成空穴。外层电子填充空穴向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。俄歇电子和X射线产额入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子[1] 。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。如果电子束将某原子K层电子激发为自由电子,L层电子跃迁到K层,释放的能量又将L层的另一个电子激发为俄歇电子,这个俄歇电子就称为KLL俄歇电子。......阅读全文
电子束光刻投影电子束扫描系统
扫描式电子束曝光系统可以得到极高的分辨率,但其生产率较低,不能满足大规模生产的需要。成形束系统生产率固然有所提高,但其分辨率一般在0.2μm左右,难以制作纳米级图形。近年来研发的投影电子束来曝光系统,既能使曝光分辨率达到纳米量级,又能大大提高生产率,且不需要邻近效应校正。在研制中的投影式电子束曝
供港蔬菜监管引入射频技术
□RFID技术被誉为21世纪十项重大高新技术领域之一。 □列为我国“十一五”规划中的重大专项,国家投入了大量的资金进行扶植。 □世界各国对无线射频识别技术(RFID)在各行各业的应用研究已成为热门课题,对该技术的应用也被认为是继条形码之后的又一次物品标识方法的大革命。 □目前,在国
电子束加热
电子束加热是相变处理时,电子束使金属材料表面很快上升到奥氏体相变退度(低于熔化温度),持续一段时间后电子束停止轰击.热t很快向冷的荃体金属扩散,使加热表面自行淬火,其组织转变为马氏体,表面硬度显著提离。电子束加热(electron beam furnace)或译电子束炉或简称EB炉(EB furna
标准物质的作用
⑪ 保存和传递特性量值,建立测量溯源性 标准物质是特性量准确、均匀性和稳定性良好的计量标准,具有在时间上保持特性量值,在空间上传递量值的功能。通过使用标准物质,可以使实际测量结果获得量值溯源性。 ⑫ 保证测量结果的一致性、可比性 通过校准测量仪器,评价测量过程,由标准物质将测量结果溯源到国家单位制(
P物质的作用
在神经传导过程中起信号转导作用 P物质是广泛分布于细神经纤维内的一种神经肽。当神经受刺激后,P物质可在中枢端和外周端末梢释放,与NK1受体结合发挥生理作用。在中枢端末梢释放的P物质与痛觉传递有关,其C-末端参与痛觉的传递,N-末端则有能被纳洛酮翻转的镇痛作用。P物质能直接或间接通过促进谷氨酸
电子束光刻成型电子束扫描系统
成形电子束曝光系统按束斑性质可分成固定和可变成形束系统。固定成形束系统在曝光时束斑形状和尺寸始终不变;可变成形束系统在曝光时束斑形状和尺寸可不断变化。按扫描方式,成形电子束曝光系统又可分为矢量扫描型和光栅扫描型。一种尺寸可变的矩形束斑的形成原理是电子束经上方光阑后形成一束方形电子束,再照射到下方
科学家用反电子束轰击钻石寻找暗物质之谜“暗光子”
科学家试图用理论上存在的“暗光子”解开所有暗物质之谜。 北京时间9月10日消息,据国外媒体报道,在我们所知的宇宙中,有十分之一的物质都处于“失踪”状态,既看不见,也摸不着。但它们的引力却可以对我们能看见的这部分物质产生影响,我们只能通过这种方式感知它们的存在。研究人员用“暗”这个形容词来
扫描电子显微镜的功能介绍
扫描电子显微镜的电子束不穿过样品,仅以电子束尽量聚焦在样本的一小块地方,然后一行一行地扫描样本。入射的电子导致样本表面被激发出次级电子。显微镜观察的是这些每个点散射出来的电子,放在样品旁的闪烁晶体接收这些次级电子,通过放大后调制显像管的电子束强度,从而改变显像管荧光屏上的亮度。图像为立体形象,反映了
扫描电子显微镜的功能介绍
扫描电子显微镜的电子束不穿过样品,仅以电子束尽量聚焦在样本的一小块地方,然后一行一行地扫描样本。入射的电子导致样本表面被激发出次级电子。显微镜观察的是这些每个点散射出来的电子,放在样品旁的闪烁晶体接收这些次级电子,通过放大后调制显像管的电子束强度,从而改变显像管荧光屏上的亮度。图像为立体形象,反映了
扫描电镜分析样品表面的深度是多少
扫描电镜是利用聚焦电子束进行微区样品表面形貌和成分分析,电子从发射源(灯丝)经光路系统最终到达样品表面,电子束直径可到 10 nm 以下,场发射电镜的聚集电子束直径会更小。聚焦电子束到达样品表面会激发出多种物理信号,包括二次电子(SE),背散射电子(BSE),俄歇电子(AE)、特征 X 射线(X-r
电子束加热历史
电子束熔炼电子束熔炼的概念是M.V.皮拉尼(M.VonPirani)于1905年提出的,但直到50年代中期美国成功地开发电子束熔炼炉后才在熔炼难熔金属钨、钼、钽等的冶金领域获得工业应用。1959年民主德国LEW公司开发了功率为45kw的电子束熔炼炉,60年代又先后研制出200kw和1200kw的电子
抗凝物质的作用
①增加抗凝血酶Ⅲ的活性2000倍,而间接发挥抗凝作用。 ②促使血管内皮细胞释放凝血抑制物、纤溶酶原激活物而凝血。 ③体内外都有作用。
次生植物物质的作用
植物体内产生但在其生长、发育、繁殖等生命活动中不属于必不可少的有机化合物;主要分为含氮有机物、萜类化合物和酚类化合物三大类,包括非蛋白氨基酸、胺类、生物碱、酚类、苯丙烷酸类、香豆素类、黄酮类、生氰糖苷、脂类、萜类、蒽醌和硫代葡萄糖苷类等许多有机物。其产生和分布有局限性,即一定的次生物质仅在特定的物种
标准物质的计量作用
在分析化学中,标准物质是溯源链的主要组成单元。因此,它们的计量学特征,特别是所提供特性量值的不确定度和在溯源层级中所处的位置,是分析测量质量保证关心的焦点问题。 标准物质所提供特性量值的不确定度必须已知且满足测量需求。因此,标准物质可以按不确定度等级(越小越好,但评定必须合理)和依据不确定度报
标准参考物质的作用
标准参考物质在分析测试和环境监测中具有重要的作用,大量的监测数据是否正确和可靠,用标准参考物质做质量控制起到了至关重要的作用。在农业环境样品分析中,土壤环境调查项目会牵涉数以千计的样品的测定工作,试想如果没有土壤标准样品在每批样品分析过程中的控制和把关作用,那结果的质量将无法得到保证。目前,我国土壤
次生植物物质的作用
植物体内产生但在其生长、发育、繁殖等生命活动中不属于必不可少的有机化合物;主要分为含氮有机物、萜类化合物和酚类化合物三大类,包括非蛋白氨基酸、胺类、生物碱、酚类、苯丙烷酸类、香豆素类、黄酮类、生氰糖苷、脂类、萜类、蒽醌和硫代葡萄糖苷类等许多有机物。其产生和分布有局限性,即一定的次生物质仅在特定的物种
影响扫描电镜(SEM)的几大要素
扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观形貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。图片来源于网络扫描电镜的优点①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。影响扫描
影响扫描电镜(SEM)的几大要素
扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观形貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。图片来源于网络 扫描电镜的优点: ①有较高的放大倍数,20-20万倍之间连续可调; ②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样
薄膜测试xrd怎么计算x射线入射的深度
谢勒公式D=kλ/FWHM cosθ计算D:晶粒尺寸(不叫离子尺寸的)k:0.89λ:XRD测试的x射线的波长,一般分kα1和kα2,具体用那种需要问测试老师。FWHM:半高宽θ:衍射角具体方法:选定最强的衍射峰,测量其衍射角和半高宽(可用jade读取),然后带入公式计算即可。
扫描电子显微镜的二次成像原理
扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X
扫描电子显微镜的优点介绍
电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。扫描电子显微镜的优点介绍扫描电子显微镜的电子束不穿过样品,仅以电子束尽量聚焦在样本的一小块地方,然后一行一行地扫描样本。
扫描电子显微镜的优点介绍
电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2μm,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。扫描电子显微镜的优点介绍扫描电子显微镜的电子束不穿过样品,仅以电子束尽量聚焦在样本的一小块地方,然后一行一行地扫描样本。
电子衍射的应用
电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。由于电子衍射强度远强于X射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。会聚束电子衍射的特点是可以用来测定晶
关于俄歇电子能谱的物理原理介绍
入射电子束和物质作用,可以激发出原子的内层电子形成空穴。外层电子填充空穴向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。 入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量
俄歇电子能谱的物理原理
入射电子束和物质作用,可以激发出原子的内层电子形成空穴。外层电子填充空穴向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以
俄歇电子能谱基本物理原理
入射电子束和物质作用,可以激发出原子的内层电子形成空穴。外层电子填充空穴向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以
实验室检验检测设备扫描电子显微镜
扫描电子显微镜(SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使
扫描电镜的基本原理介绍
扫描电子显微镜是一种大型分析仪器, 它广泛应用于观察各种固态物质的表面超微结构的形态和组成。 所谓扫描是指在图象上从左到右、从上到下依次对图象象元扫掠的工作过程。它与电视一样是由控制电子束偏转的电子系统来完成的, 只是在结构和部件上稍有差异而已。 在电子扫描中, 把电子束从左到右方向的扫描运
扫描电子显微镜的基本原理
扫描电子显微镜是一种大型分析仪器,它广泛应用于观察各种固态物质的表面超微结构的形态和组成。所谓扫描是指在图象上从左到右、从上到下依次对图象象元扫掠的工作过程。它与电视一样是由控制电子束偏转的电子系统来完成的,只是在结构和部件上稍有差异而已。在电子扫描中,把电子束从左到右方向的扫描运动叫做行扫描或称作
扫描电子显微镜基本原理
扫描电子显微镜是一种大型分析仪器, 它广泛应用于观察各种固态物质的表面超微结构的形态和组成。所谓扫描是指在图象上从左到右、从上到下依次对图象象元扫掠的工作过程。它与电视一样是由控制电子束偏转的电子系统来完成的, 只是在结构和部件上稍有差异而已。在电子扫描中, 把电子束从左到右方向的扫描运动叫做行扫描