Antpedia LOGO WIKI资讯

AFM表征石墨烯的优缺点

由于单层石墨烯理论厚度很小,在扫描电镜中很难观察到。原子力显微镜是表征石墨烯片层结构的最有力、最直接有效的工具。它可以清晰的反映出石墨烯的横向尺寸、面积和厚度等方面的信息,但一般只能用来分辨单层或双层的石墨烯。原子力显微镜可以表征单层石墨烯,但也存在缺点:耗时且在表征过程中容易损坏样品;此外,由于C键之间的相互作用,表征误差达0.5nm甚至更大,这远大于单层石墨烯的厚度,使得表征精度大大降低。由于石墨烯厚度仅为1个至几个原子层,晶体的缺陷和表面吸附物质的不同,都会引起表征结果的不同。在实际研究中,往往需要根据需要选取合适的表征方法把得到的结果互相比较,互相印证才能得到关于石墨烯的准确信息。......阅读全文

原子力显微镜成像要点

     原子力显微镜(AFM)作为现代微观领域研究的重要工具,在表面分析中具有广泛的应用,它具有非常高的分辨率,是近年来表面成像技术中最重要的进展之一。原子力显微镜探针  探针(包括微悬臂和针尖)是原子力显微镜的核心部件,直接决定原子力显微镜的分辩率。在针尖与样品的接

如今原子力显微镜的应用正在不断扩大

原子力显微镜技术在这几年里发展迅速,也使他的应用范围越来越广,以前一些没有涉及到的领域,如今也有很好的应用,接下来小编为大家简单介绍一下。  1、医学研究领域:在医学的诊断中,原子力显微镜可直观地观测到细胞膜原子量级的变化,有效帮助医生对病例的进一步诊断。例如在心血管系统的研究中,科研人员利用原子力

石墨烯检测方法大汇总,石墨烯快速检测

  超全面石墨烯检测方法大汇总,看完就是石墨烯检测专家了!  2004年,康斯坦丁博士通过胶带从石墨上分离出石墨烯这种“神器的材料”,它的出现在全世界范围内引起了极大轰动……  石墨烯具有非同寻常的导电性能、极低的电阻率极低和极快的电子迁移的速度、超出钢铁数十倍的强度,极好的透光性……这些优异的性能

对比学习扫描隧道显微镜(STM)与原子力显微镜(AFM)

  1 STM  1.1 STM工作原理  扫描隧道显微镜的基本原理是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近(通常小于1nm)时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。  尖锐金属探针在样品表面扫描,利用针尖-样品间纳米间隙的量子隧道效

扫描隧道显微镜(STM)与原子力显微镜(AFM)的对比

1.1 STM工作原理扫描隧道显微镜的基本原理是将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近(通常小于1nm)时,在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。尖锐金属探针在样品表面扫描,利用针尖-样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈

激光共聚焦显微镜、扫描电镜、原子力显微镜的区别和关...

激光共聚焦显微镜、扫描电镜、原子力显微镜的区别和关联成像进展激光共聚焦显微镜,扫描电镜,原子力显微镜是目前科研领域用的比较多的成像系统。近年来,随着技术的不断发展,各种系统关联应用成为一个趋势,本文简单整理一下各种显微镜的区别及关联进展情况。一、极限分辨率不同, 缘于放大信号源的差异激光共聚焦:极限

原子力显微镜(AFM)的工作模式及对样品要求

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}工作模式原子力显微镜的工作模式是以针尖与样品之间的作用力的形式来分类的。主要有以下3种操作模式:接触模式(contact

导电型原子力显微镜的研制和应用研究

     扫描隧道显微镜只能测量导电的样品,原子力显微镜对样品是否导电没有特殊要求,但是无法测量样品导电性。在实际应用中,更多的研究对象是导电质与非导电质的混合物。特别是近年来人们感兴趣的金属有机复合材料、纳米颗粒镶嵌材料、纳米电子学等方面,都涉及到局域导电性及非导电性

如何表征石墨烯层数?

表征石墨烯的手段主要有透射电子显微镜(TEM)、X射线衍射(XRD)、紫外光谱(UV)、原子力显微镜(AFM)、拉曼光谱(RAMAN)、扫描隧道显微镜(STM)及光学显微镜等。其中,XRD和UV均可对石墨烯的结构进行表征,主要用来监控石墨烯的合成过程;而表征石墨烯的层数可以采取的手段有TEM、RAM

原子力显微镜测量碳纤维形貌及粗糙度的方法

     利用原子力显微镜对微米级碳纤维表面进行形貌观察和粗糙度分析的方法。实验介绍了一种样品转移制备的方法,采用直接定位单根碳纤维方法,采用轻敲模式,进行扫描测量。结果表明,此种方法操作简单,高效实用,能够得到质量较高的碳纤维的表面形貌并分析其粗糙度。   

Bruker公司成为英国石墨烯研究院官方指定合作伙伴

  近日,Bruker公司宣布与英国石墨烯研究院(NGI)成为正式合作伙伴。本次合作,NGI将新购置Dimension FastScan®、Dimension Icon®两台Bruker原子力显微镜(AFM)。这两套系统,加之实验室已有的五台Bruker AFM,将应用于有关石墨烯的研究工作。作为合

超全面锂电材料常用表征技术及经典应用

  在锂离子电池发展的过程当中,我们希望获得大量有用的信息来帮助我们对材料和器件进行数据分析,以得知其各方面的性能。目前,锂离子电池材料和器件常用到的研究方法主要有表征方法和电化学测量。  电化学测试主要分为三个部分:(1)充放电测试,主要看电池充放电性能和倍率等;(2)循环伏安,主要是看电池的充放

石墨烯纳米带电触头技术最新研究成果

  6月13日,来自荷兰Aalto大学的一项研究称,科学家们成功展示了如何利用单个化学键在石墨烯纳米带上建立电触头。石墨烯是一种蜂窝晶格状排列的碳原子单层物质材料,近年来被科学家们看好其在电子领域的无限前景。   室温下工作的石墨烯晶体管需要小于10纳米尺寸的工作条件,这就意味着石墨烯纳米结构需满

原子力显微镜与扫描力显微术摩擦力

      摩擦力显微镜(LFM)是在原子力显微镜(AFM)表面形貌成像基础上发展的新技术之一。材料表面中的不同组分很难在形貌图像中区分开来,而且污染物也有可能覆盖样品的真实表面。LFM恰好可以研究那些形貌上相对较难区分、而又具有相对不同摩擦特性的多组分材料表面。图1

AFM表征石墨烯原理

AFM可用于了解石墨烯细微的形貌和确切的厚度信息,属于扫描探针显微镜,它利用针尖和样品之间的相互作用力传感到微悬臂上,进而由激光反射系统检测悬臂弯曲形变,这样就间接测量了针尖样品间的作用力从而反映出样品表面形貌。因此,表征方法主要表征片层的厚度、表面起伏和台阶等形貌,及层间高度差测量。原子力显微技术

研究发现低温等离子体处理氧化石墨烯可提高抗菌能力

  近日,中国科学院合肥物质科学研究院技术生物与农业工程研究所黄青课题组、等离子体物理研究所王奇课题组合作,利用低温等离子体处理氧化石墨烯,发现处理后的氧化石墨烯的灭菌能力显著提高。  石墨烯作为一种新型二维碳材料,在多个生物医学领域都显示出巨大应用前景。但与抗生素、银等其他传统灭菌药物/材料相比,

分子科学从这里起源——记中科院化学所分子科学创新历程

  开栏寄语:  2016年10月,中国科学院化学研究所将迎来60周岁生日。60年来,几代化学所人不懈努力,顽强拼搏,勇攀高峰,形成了“创新、求是、团结、奉献”的优秀文化,为我国科技事业、国民经济和国防建设作出了重要贡献。如今,化学所以基础研究为主,正在有重点地开展国家急需的、有重大战略目标的高新技

中科院化学所:分子科学从这里起源

开栏寄语:2016年10月,中国科学院化学研究所将迎来60周岁生日。60年来,几代化学所人不懈努力,顽强拼搏,勇攀高峰,形成了创新、求是、团结、奉献的优秀文化,为我国科技事业、国民经济和国防建设作出了重要贡献。如今,化学所以基础研究为主,正在有重点地开展国家急需的、有重大战略目标的高新技术创新研究,

2014年全球十大化学研究 中国两项研究成果在列

  近日,美国化学会出版的《化学化工新闻》(Chemical&Engineering News,C&EN)杂志发布2014年全球十大化学研究,中国研究团队参与的两项研究成果在列。北京大学李彦教授的研究团队制造高纯度特定类型单壁碳纳米管的新方法,复旦大学化学系周鸣飞教授科研团队关于过渡

巧用扫描电镜实现衬底支撑石墨烯的高质量成像

常见的衬底支撑石墨烯体系,有SiC热解生长石墨烯、Cu等金属衬底上CVD法生长石墨烯、Si上转移石墨烯等。石墨烯的常用结构表征技术包括透射电镜、拉曼(Raman)、原子力显微镜(AFM)、光学显微镜以及扫描电镜(SEM)。其中,SEM具有分辨率达纳米级、观测范围大、速度快、无损等优点,在石墨烯的生长

化学所在石墨烯可控制备和性能研究方面取得系列进展

  在中国科学院、科技部、国家自然科学基金委的大力支持下,化学研究所有机固体院重点实验室相关研究人员在石墨烯的可控制备和性能研究方面取得系列进展,相关结果发表在PNAS、JACS (2篇)、Adv. Mater.(3篇),并应邀在Acc. Chem. Res.杂志上发表了述评。  石

石墨烯表征手段

石墨烯的表征主要分为图像类和图谱类图像类以光学显微镜透射电镜TEM扫描电子显微镜、SEM和原子力显微分析AFM为主而图谱类则以拉曼光谱Raman红外光谱IRX射线光电子能谱、XPS和紫外光谱UV为代表其中TEM、SEM、Raman、AFM和光学显微镜一般用来判断石墨烯的层数而IRX、XPS和UV则可

AFM原子力显微镜在锂离子电池行业中的应用

锂系电池一般分为锂电池和锂离子电池。锂电池:以金属锂为负极。锂离子电池:使用非水液态有机电解质。锂离子电池主要应用于手机和笔记本电脑中,也就是人们通常俗称的锂电池。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。而真正锂系电池分类中的锂电池,由于其危险性,很少应用在电子产品中。日本索尼

实现六角氮化硼表面石墨烯边界调控

  近日,《纳米尺度》(Nanoscale)杂志以《六角氮化硼表面石墨烯晶畴边界调控》(Edge Control of Graphene Domains Grown on Hexagonal Boron Nitride)为题,在线刊登了中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室陈

上海微系统所等实现六角氮化硼表面石墨烯边界调控

  近日,《纳米尺度》(Nanoscale)杂志以《六角氮化硼表面石墨烯晶畴边界调控》(Edge Control of Graphene Domains Grown on Hexagonal Boron Nitride)为题,在线刊登了中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室陈

二维原子晶体材料单层二硒化钒的1D图案化及其研究

  二维原子晶体材料的功能化对实现其在光电、催化、新能源以及生物医学等领域中的应用具有重要意义。在实现二维材料功能化方面,结构图案化调控是其中一个重要手段。之前,人们利用电子/离子束刻蚀、元素掺杂等手段实现了二维材料的图案化。图案化的二维材料则呈现出了许多新的物理性质,例如“纳米网状”石墨烯的半导体

AFM再立功!科学家们揭示二维冰的生长机制

  中国科学院物理研究所/北京凝聚态物理国家研究中心王恩哥院士与北京大学物理学院量子材料中心江颖、徐莉梅以及美国内布拉斯加大学林肯分校曽晓成合作,利用高分辨qPlus型原子力显微镜技术,首次在实验上证实了冰在二维极限下可以稳定存在,将其命名为:二维冰I相,并以原子级分辨率拍到了二维冰的形成过程,揭示

中科院物理所等首次证实了冰在二维极限下可以稳定存在

  中国科学院院士、中国科学院物理研究所/北京凝聚态物理国家研究中心研究员王恩哥与北京大学物理学院量子材料中心江颖、徐莉梅以及美国内布拉斯加大学林肯分校曾晓成合作,利用高分辨qPlus型原子力显微镜技术,首次在实验上证实了冰在二维极限下可以稳定存在,将其命名为:二维冰I相,并以原子级分辨率拍到了二维

纳米尺度富勒烯电子器件可自行制冷

  近日,美国伊利诺伊大学研究人员宣布,他们用原子力显微镜探针检测了与富勒烯(石墨单原子层)接触点的热电效应,首次发现富勒烯晶体管在纳米尺度具有自行制冷效应,能降低自身温度。该研究成果发表在4月3日网络版的《自然·纳米技术》杂志上。   计算机芯片的速度和尺寸大小受制于散热效果。电流通过设备材料由

量子计算技术再获神器 科学家开发出新的成像技术

  最近,《Science》子刊《Science Advances》上发表的一篇论文称,研究团队开发了一种能够窥探硅晶体内部结构的非侵入性成像技术。这很有可能成为测试常规硅基芯片的有效方法,且可能为下一代的量子计算技术奠定基础。  这支来自奥地利林茨大学、伦敦大学学院、苏黎世联邦理工学院和瑞士洛桑联